R包SCENIC:安装

SCENIC:Single Cell rEgulatory Network Inference and Clustering

目前支持分析的物种:人、鼠、果蝇

input的要求:scRNA seq的表达矩阵

列对应样本id,行名(rowname)对应基因名,基因名必须是gene-symbol格式;

表达量单位:优先考虑基因的总counts(可用或不可用UMI);也接受TPM、FPKM/RPKM等;建议避免使用归一化样本(如TPM)进行共表达分析,因为可能会引起人为的影响。但目前使用raw counts、normalized count 、TPM等的结果都尚且可靠。

剩余的steps不受表达量单位或者归一化影响,因为motif 的分析不需考虑表达量;AUCell包是基于细胞内排序(作为内在的归一方法)。



安装

1.主要有3个R包

GENIE3:推断共表达网络

RcisTarget:TF结合的motif分析

AUCell:鉴定具有激活基因集或者基因网络的细胞

利用biocLite安装上述3个R包和需要的dependencies等

if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")

BiocManager::install(c("GENIE3", "AUCell", "RcisTarget"), version = "3.8")

# Also required:

install.packages('zoo')

# Recommended to run AUCell:

BiocManager::install(c("mixtools", "rbokeh"))

# To visualize the binary matrices and perform t-SNEs:

BiocManager::install(c("NMF", "pheatmap", "Rtsne", "R2HTML"))

# To support paralell execution (not available in Windows):

BiocManager::install(c("doMC", "doRNG"))

# To export/visualize in http://scope.aertslab.orgif (!requireNamespace("devtools", quietly = TRUE)) install.packages("devtools")

devtools::install_github("aertslab/SCopeLoomR", build_vignettes = TRUE)

# Other dependencies for the examples (lower priority)

BiocManager::install(c("SingleCellExperiment"))

或者利用install_github安装

# Github:devtools::install_github("aertslab/AUCell")

devtools::install_github("aertslab/RcisTarget")

devtools::install_github("aertslab/GENIE3")# Bioconductorinstall.packages("https://bioconductor.org/packages/release/bioc/src/contrib/AUCell_1.4.1.tar.gz", repos=NULL)

install.packages("https://bioconductor.org/packages/release/bioc/src/contrib/RcisTarget_1.2.1.tar.gz", repos=NULL)

install.packages("https://bioconductor.org/packages/release/bioc/src/contrib/GENIE3_1.4.3.tar.gz", repos=NULL)

然后开始真正的重头戏:安装R包SCENIC

# install.packages("devtools")

devtools::install_github("aertslab/SCENIC", ref="v1.1.0")

packageVersion("SCENIC")

安装完R包之后,还要下载motif分析(R包RcisTarget)所需的物种特异的数据库:

motif数据库下载网页https://resources.aertslab.org/cistarget/

SCENIC包利用下载DB默认对基因启动子(TSS上游500bp)和TSS上下游10bp的区域的motif进行评分。

人:

dbFiles <- c("https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-500bp-upstream-7species.mc9nr.feather","https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-tss-centered-10kb-7species.mc9nr.feather")

鼠:

dbFiles <- c("https://resources.aertslab.org/cistarget/databases/mus_musculus/mm9/refseq_r45/mc9nr/gene_based/mm9-500bp-upstream-7species.mc9nr.feather","https://resources.aertslab.org/cistarget/databases/mus_musculus/mm9/refseq_r45/mc9nr/gene_based/mm9-tss-centered-10kb-7species.mc9nr.feather")

果蝇:

dbFiles <- c("https://resources.aertslab.org/cistarget/databases/drosophila_melanogaster/dm6/flybase_r6.02/mc8nr/gene_based/dm6-5kb-upstream-full-tx-11species.mc8nr.feather")

下载需要分析物种对应的.feather或者.descr文件。

为了避免下载问题(如网速过慢)导致下载文件不完整,官方建议使用zsync_curl下载;如一定要用R下载,可以按下面的代码执行

# dir.create("cisTarget_databases"); setwd("cisTarget_databases") # if needed

for(featherURL in dbFiles)

{

download.file(featherURL, destfile=basename(featherURL)) 

descrURL <- gsub(".feather$", ".descr", featherURL)

if(file.exists(descrURL))  download.file(descrURL, destfile=basename(descrURL))

}

最后通过sha256sum确定是否下载正确

https://resources.aertslab.org/cistarget/databases/sha256sum.txt

a95624e792200f2c53c4a184056660e3d29b5b59a7d6ba90ea0762d8cba960c7 dm3-regions-11species.mc9nr.feather

4944d8bd771ee0c039416e97a546836b4a96120eb4eb4c45b67943ca9f0e80c9  dm6-5kb-upstream-full-tx-11species.mc8nr.feather

2843a63e39149cded2319894430ef18529d9d7b3e7357450a6b6812096c73fef  dm6-regions-11species.mc8nr.feather

43c1f004caf9e52ecebd9ba232e730d70ea802588b9b6b5fb73e8a95d2137d33  hg19-500bp-upstream-10species.mc8nr.feather

fd426e4fe1ac0de515ee791f53b02a9bd5cefbe559fb62f50864be1ec01638a0  hg19-500bp-upstream-10species.mc9nr.feather

1ffa58e97520cb4948a56a0dd391cec9c8542d9aa503901e3d4416b4f860d725  hg19-500bp-upstream-7species.mc8nr.feather

12576cfc5f19354610831a558ce4ec42780735b7d840e0a06259c080880bcc6e  hg19-500bp-upstream-7species.mc9nr.feather

d43106ae9bc11ea610437175fe9b58693dd089246c8eab906760a6753574b792  hg19-regions-9species.all_regions.mc9nr.feather

4ca3d546e14ae9a840fdc2d5385beb2df9206eb86cf765279c542df0280652f5  hg19-regions-9species.all_regions.mc8nr.feather

a33b93e11d4869e8ee5d04534809b980f05d0542a176dababe4f3fb28d778797  hg19-tss-centered-10kb-10species.mc8nr.feather

9f804bef9ae9579f0a15e5adf5030a389c58d967f5eb7af3a7b89f7226a78933  hg19-tss-centered-10kb-10species.mc9nr.feather

df5054813bfc49cc45171f41ef76c9b99ee9e09c80c559ffadccd7382e52d57a  hg19-tss-centered-10kb-7species.mc8nr.feather

20135a199f8883a456e5d0a4de66a3fc0ff33b2d8bd0f7b92dd80a8eaef9fee1  hg19-tss-centered-10kb-7species.mc9nr.feather

1d3287279d8b00e0d3d64c51449c4656a15f6e9a473fbea3d386fcd410fa4a93  hg19-tss-centered-5kb-10species.mc8nr.feather

66175ee01f83c888d5bd5fcad0242f651c1667548004e19f84d84b88bb677684  hg19-tss-centered-5kb-10species.mc9nr.feather

bc9155423690db464277212d7f5cea67439f4407b6cb24de0e49bf4e34e11353  hg19-tss-centered-5kb-7species.mc8nr.feather

5a923461c6abc5ef9f33fa37a4033fe456c5a61afa76e03898fe8d1257e3659b  hg19-tss-centered-5kb-7species.mc9nr.feather

fea7f9159645392970ecb2c902fb0622681dd63b9a47b36363f50569c5989f62  hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather

e7f980ec2f9ddedcfc563d9ab045ea6b769eba654d3348a1fc6140b1575f9428  hg38__refseq-r80__500bp_up_and_100bp_down_tss.mc9nr.feather

70a808fb5fab0a5e97c4ab3749bb7c4610437b4140ee3ebb331b500e2a10df3d  mm10__refseq-r80__10kb_up_and_down_tss.mc9nr.feather

ffc5eecfad00f799704737e78522c389595210ad58f3ca64fe959d78284a2323  mm10__refseq-r80__500bp_up_and_100bp_down_tss.mc9nr.feather

351ba4d0d09b350f575f94dd43aeed72719c8277efa8d58d235e242c95837d81  mm9-500bp-upstream-10species.mc8nr.feather

283c14912ab895ddd221f225cbf6aad9e1119ecaeeac6dcdd839a7fd6dba62ba  mm9-500bp-upstream-10species.mc9nr.feather

27925863c3cc95033e3f7f989a34ae3c8c1e4d2b8e4877f215d249dd23067863  mm9-500bp-upstream-7species.mc8nr.feather

bba21fb3b7e96ebfb97d31a59d661678973073b77b1c3e7a1bb2e49114a82425  mm9-500bp-upstream-7species.mc9nr.feather

76c069c92d22dae9f5ab50cf4289524c081442041bc0a98bb54ab118ae072715  mm9-tss-centered-10kb-10species.mc8nr.feather

337518ebc04205122a24c3385fa349d1a238a564d186f60b0e6bcb7eb2a65688  mm9-tss-centered-10kb-10species.mc9nr.feather

62137ad2d883d6dfb5be3375e203f51ae406963bebbbf3a8886d712e3234765b  mm9-tss-centered-10kb-7species.mc8nr.feather

ad7ee54883f5964c0e699e5c5bab08589eb0626599297085197cb6f80c5e12fc  mm9-tss-centered-10kb-7species.mc9nr.feather

18f41361f5eeec0963e426f42db66824d1dcd184a0c04a412e1b7ab146fdbac6  mm9-tss-centered-5kb-10species.mc8nr.feather

ce36176f30c8c8ea811403127ed9c1cdb83d9a3fdaa8573de4569ba99f1f4b28  mm9-tss-centered-5kb-10species.mc9nr.feather

3ce3a4653903b3c2cff41b382a5c7ce34bbaab8716b2cf5d3159b2b9542dee98  mm9-tss-centered-5kb-7species.mc8nr.feather

4675c2e86e40bb041a933f573e7564d738e866ea1b1b9c614155c9955d29fb70  mm9-tss-centered-5kb-7species.mc9nr.feather

286dd4e60d743a43e7ae19eb8eaa8589a5e2e8a74b6fce04dfeeb2cbb72b700d  mm9-regions-9species.all_regions.mc9nr.feather

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容