ICA与PCA的区别

昨天晚上,海总讲了ICA,导师问了大家这么一个问题:
ICA和PCA的区别是什么?
后来我们思来想去,七嘴八舌地讨论了一下,师妹提到PCA是以贡献度的不同进行区分的,鑫总提到ICA和PCA的目标是不一致的。
这的确是一个值得讨论的问题:一开头,海冬提到ICA处理的数据都不是高斯的。这是有道理的,因为如果的高斯的,那么它的效果的确不好。
我也答不上什么,对于PCA的概念我又忘记了。

看了许多网上的回答和教程,我发现PCA实际上是最小化数据之间的方差,ICA最小化高阶统计比如四阶统计量(或者峰度),因此能最小化输出量的互信息。

PCA能提取出互相正交的高能量的信号,然而ICA确定非高斯信号的独立成分。
ICA模型等式是欠确定的系统,一个人不能够确定独立成分的方差。
一个人不能确定主导成分的排序。

今天在知乎里看到一个答案,觉得回答的非常完整:

不管是PCA还是ICA,都不需要你对源信号的分布做具体的假设;如果观察到的信号为高斯,那么源信号也为高斯,此时PCA和ICA(盲源分离)等价。
ICA认为一个信号可以被分解成若干个统计独立的分量的线性组合,而后者携带更多的信息。我们可以证明,只要源信号非高斯,那么这种分解是唯一的。若源信号为高斯的话,那么显然可能有无穷多这样的分解。

pca为最大化方差,使得残余方差最小,或信息损失最小(方差即信息)。
ica为最大化独立性,使联合概率与各分量概率乘积最接近。

不管是PCA还是ICA,都不需要你对源信号的分布做具体的假设
---------不对吧,PCA对分布没有假设,ICA则要求分布独立(同时不为高斯分布),两个根本不是一回事。

如果观察到的信号为高斯,那么源信号也为高斯,此时PCA和ICA等价
------ 不对吧。如果源信号有大于一个是高斯分布,ICA没有解。PCA则和分布无关。

还有一种说法:
ICA认为观测信号是若干个统计独立的分量的线性组合,ICA要做的是一个解混过程。
而PCA是一个信息提取的过程,将原始数据降维,现已成为ICA将数据标准化的预处理步骤。

书上的说法是:

  1. 主成分分析假设源信号间彼此非相关,独立成分分析假设源信号间彼此独立。
  2. 主成分分析认为主元之间彼此正交,样本呈高斯分布;独立成分分析则不要求样本呈高斯分布。

暂时只能这么死记硬背乐。

非高斯情况下,pca的主元不是最优主元.png

Note: PCA and the SVD are the same thing and it's usually better to just use the SVD of the centered data matrix because SVD algorithms are faster and numerically more stable than PCA.
Note2: In some cases NMF (non negative matrix factorization) can work as ICA. In NMF the basis you want to find is the one that helps you reconstruct the data as a positive summation over the basis vectors. This means the basis will have vectors that represents parts of your original data, if your data contains images then the NMF basis contains parts of images that will help you reconstruct any of your images in the dataset.

[reference]
1.http://www.360doc.com/content/16/0928/08/17448723_594293500.shtml

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容