python实战,中文自然语言处理,应用jieba库来统计文本词频

模块介绍

安装:pip install jieba 即可

jieba库,主要用于中文文本内容的分词,它有3种分词方法:

1. 精确模式, 试图将句子最精确地切开,适合文本分析:

2. 全模式,把句子中所有的可以成词的词语都扫描出来,速度非常快,但是不能解决歧义;

3. 搜索引擎模式,在精确模式的基础上,对长词再词切分,提高召回率,适合用于搜索引擎分词。

我们用个小例子演示下

这上面的小例子中我们看到了一个问题,如果我们只是简简单单的将所有词切分出来,然后去统计它们出现的次数,那么你会发现,其中的“是”,“的”等等词语以及各种标点符号是出现频率最高的,那么这里有2种方式,1是直接去掉长度为1的所有词语,比如上面所说的“是”,“的”或者标点符号等等,还有一种呢,是用到了TF-IDF技术

TF-IDF (term frequency-inverse document frequency)是一种用于信息检索(information retrieval)与文本挖掘(text mining)的常用加权技术,比较容易理解的一个应用场景是当我们手头有一些文章时或者微博评论,我们希望计算机能够自动地进行关键词提取。而TF-IDF就是可以帮我们完成这项任务的一种统计方法。它能偶用于评估一个词语对于一个文集或一个语料库中的其中一份文档的重要程度。这个方法又称为"词频-逆文本频率"。

不好理解的话,我们一样来写一个小例子:

withWeight=True 参数为是否返回权重值,默认是关闭的,我们直接打印出所有词和它对于的权重,就可以用于计算了!

小说词频分析

简单的写个小demo,分析小说的词频,并将前10个打印出来!篇幅有限,就以《天龙八部》的第1章为例,大概有4万多个字符,直接上代码了!

在第425行,进行分词,然后将结果进行遍历(426-433行),遍历中,剔除单个字符,每个词语和它所出现的次数写入字典,第434、435行将字典转化为元组所组成的列表,并依据出现次数进行排序,然后遍历列表,取出前10名。

第二段代码(441-445行)是依据权重取出了关键词,可以看出,这章小说,主要讲的就是段誉的事情了,不论是权重还是词频都是他最高。。。

文本内容有大概400多行,就折叠了,大家可以直接套用代码,自己试试。

后记

今天的分享就这些了,python的自然语言处理其实还有好多内容,比如停止词的使用,词性等等好多,大家如果有兴趣,可以来找我一起深入学习!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容