ORM字段, ORM字段参数, 关系字段,元信息

目录

  1. ORM 字段
  2. ORM字段参数
  3. 关系字段
  4. 元信息

1. 常用字段

AutoField

int自增列,必须填入参数 primary_key=True。当model中如果没有自增列,则自动会创建一个列名为id的列。

IntegerField

一个整数类型,范围在 -2147483648 to 2147483647。

CharField

字符类型,必须提供max_length参数, max_length表示字符长度。

DateField

日期字段,日期格式 YYYY-MM-DD,相当于Python中的datetime.date()实例。

DateTimeField

日期时间字段,格式 YYYY-MM-DD HH:MM[:ss[.uuuuuu]][TZ],相当于Python中的datetime.datetime()实例

2. ORM字段参数

null

null=True表示该字段可以为空。

unique

如果设置为unique=True 则该字段在此表中必须是唯一的 。

db_index

如果db_index=True 则代表着为此字段设置索引

default

为该字段设置默认值。

DateField和DateTimeField字段专属

auto_now_add

配置auto_now_add=True,创建数据记录的时候会把当前时间添加到数据库。

auto_now

配置上auto_now=True,每次更新数据记录的时候会更新该字段。

3. 关系字段

1. ForeignKey

一般把ForeignKey字段设置在 '一对多'中'多'的一方。

to

设置要关联的表

to_field

设置要关联的表的字段

related_name

反向操作时,使用的字段名,用于代替原反向查询时的'表名_set'。

class Classes(models.Model):
    name = models.CharField(max_length=32)

class Student(models.Model):
    name = models.CharField(max_length=32)
    theclass = models.ForeignKey(to="Classes", related_name="students")

查询某个班级关联的所有学生(反向查询)时 , 查询语句
由: models.Classes.objects.first().student_set.all()
变为: models.Classes.objects.first().students.all()

related_query_name

反向查询操作时,使用的连接前缀,用于替换表名。

db_constraint

是否在数据库中创建外键约束,默认为True。

on_delete

当删除关联表中的数据时,当前表与其关联的行的行为。值如下所示

  models.CASCADE
  删除关联数据,与之关联也删除


  models.DO_NOTHING
  删除关联数据,引发错误IntegrityError


  models.PROTECT
  删除关联数据,引发错误ProtectedError


  models.SET_NULL
  删除关联数据,与之关联的值设置为null(前提FK字段需要设置为可空)


  models.SET_DEFAULT
  删除关联数据,与之关联的值设置为默认值(前提FK字段需要设置默认值)


  models.SET
  删除关联数据,例子如下
  a. 与之关联的值设置为指定值,设置:models.SET(值)
  b. 与之关联的值设置为可执行对象的返回值,设置:models.SET(可执行对象)

        def func():
            return 10

        class MyModel(models.Model):
            user = models.ForeignKey(
            to="User",
            to_field="id",
            on_delete=models.SET(func)
        )

4. 元信息

ORM对应的类里面包含另一个Meta类,而Meta类封装了一些数据库的信息。主要字段如下:

db_table

ORM在数据库中的表名默认是 app_类名,可以通过db_table可以重写表名。

index_together

联合索引。

unique_together

联合唯一索引。

ordering

指定默认按什么字段排序。
只有设置了该属性,我们查询到的结果才可以被reverse()。

eg:
    class UserInfo(models.Model):
        nid = models.AutoField(primary_key=True)
        username = models.CharField(max_length=32)

        class Meta:
            # 数据库中生成的表名称 默认 app名称 + 下划线 + 类名
            db_table = "table_name"

            # 联合索引
            index_together = [
                ("pub_date", "deadline"),
            ]

            # 联合唯一索引
            unique_together = (("driver", "restaurant"),)
            
            ordering = ('name',)
            
            # admin中显示的表名称
            verbose_name='哈哈'

            # verbose_name加s
            verbose_name_plural=verbose_name
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,607评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,239评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,960评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,750评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,764评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,604评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,347评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,253评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,702评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,893评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,015评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,734评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,352评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,934评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,052评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,216评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,969评论 2 355

推荐阅读更多精彩内容