在选择数据库的路上,我们遇到过哪些坑?(2)

【编者按】你会怎么选择数据库,是关系数据库、XML 数据库、资源描述框架(RDF),还是图形数据库?本文的第1部分深入而生动地探讨了各种选择。在第2部分,将深入介绍使用 Neo4j 的注意点。文章系国内 ITOM 管理平台 OneAPM 编译呈现。

过渡到 Neo4j 之后的经验和教训

下面介绍一些有关运行 Neo4j 的实用技巧:

1. 如果你是 Java 商城,请嵌入式地运行 Neo4j

Neo4j 是本地 Java 平台,我们又是 Java 商城,用 Neo4j 相当合适。嵌入 Neo4j 让我们不用再进行 REST 调用,这对于安全来说确实很重要。有关进行 REST 调用的进一步危害,请观看这段有关 REST 安全漏洞的 JavaOne 讨论

嵌入式地运行 Neo4j 还为我们大幅降低了复杂性。我们可以直接在进程中调用 Neo4j API,从而快速了解 Cypher 语言,以便运行 Cypher 和 Java API 这两者的结合体。同时我们再也不需要托管和非托管的扩展了。

2. 摸清自己的优势

摸清自己的优势和所选择的工具的优势,这一点极为重要。用工具来做不适当的事,效果会大打折扣。

本地图形数据库在关系方面的表现确实很好;在图形中找到切入点,然后按照需要深入地研究各种关系,这在 Neo4j 中快得惊人。但如果想要在单个节点之外进行复杂的多值属性全文检索,效果就大打折扣了 —— 但我们选择图形数据库并不是为了做这个。

3. 了解查询时会发生哪些事情

了解查询时会发生哪些事情,这一点也极为重要,这能够优化 Cypher 语言。

请看下面这个非常简单的查询。我想要找到 Franklin Country 所有拥有狩猎执照的男性,并且执照上的地址需要和此人的家庭住址相匹配,以便我们确认这是同一个人。

我有一个人员节点,一个执照节点,还有一个位置节点,每个节点上都有各种不同属性:

在选择数据库的路上,我们遇到过哪些坑?(2)

数据库要做的第一件事就是找到切入点(可能有多个切入点),然后图形从切入点展开搜索。寻找切入点通常是个让人头痛的问题。为此要使用带有静态索引集的基于规则的规划程序,这一软件已于近期升级为基于费用。这虽然还不够完美,但无疑已经朝着正确的方向前进了一大步。

索引

索引基本上会复制数据库中的信息片段,这样有利于它迅速找到节点。在本例中,只使用信息片段来确定切入点。虽然不是必须要使用索引,但它确实能派上用场。如果要在特定的节点属性上进行检索,在节点上设置一个索引会是个好办法,即使这会占用磁盘空间。

索引分为两种:schema 和 legacy。Schema 索引是最新版,使用内部自定义的 Neo4j 内置索引,目前是默认设置。

一旦利用 Cypher 或 Java API 创建 schema 索引后,这些索引就会自动由数据库维护。例如,如果你想在每个带有“人员”标签和“性别”属性的节点上创建索引,当你创建新节点、更改节点值或删除节点时,数据库将自动对其进行更新。这时你也可以设置限定条件,比如必须存在属性或属性必须是唯一的。

Legacy 索引是 Lucene 索引,是较早的版本但尚未弃用。可以通过配置文件、Neo4j 属性文件、Java API 或 Cypher 来设置 legacy 索引。Legacy 索引使用的是 Lucene 而非 Neo4j 专有索引机制。我们在用 Neo4j 时几乎没有什么漏洞,而每次遇到的漏洞基本都和 legacy 索引有关。即使是这样,有时候这些索引也是必要的。

Apache Luke 是一款非常不错的开源工具,用户可以用它直接查看和搜索 Lucene 索引。这也帮助我们修复了 legacy 索引中的异常行为。

自动索引与手动索引

Legacy 索引有两种用法:自动索引和手动索引。我建议使用自动索引,因为它更容易维护。基本上只要设置一次(可以在配置文件中设置也可以通过 API 设置),然后设为在特定类型的节点上为特定类型的属性编写索引。自动索引还能够在必要时轻松重建索引。

但是用户无法指定是哪种类型的索引。在 Lucene 中,schema 存在不同索引类型,例如字符串、区分大小写,以及数值,这些都是物理上独立的索引。

如果你在查询 Lucene 时想要使用这些索引,必须要做的第一件事就是告诉 Lucene 要使用哪个索引。但如果进行自动索引,Neo4j 可以根据你要编写索引的第一个对象来选择使用哪个索引。例如,如果你设置的第一个索引是蓝色,Neo4j 就会明白蓝色是字符串,然后会永久性地将蓝色放在字符串索引中。

如果你能很好地控制收到的数据,这一索引方式效果会很不错。但我们的系统没有这样。我们从许多不同的来源接收数据,所以收到的“blue”(蓝色)属性可能会指年龄。但如果这一属性是最先收到的,Neo4j 就会把年龄作为基于字符串的属性而不是数值属性来编写索引,如此一来,之后就没法按照我希望的方式展开进一步比对和排列了。在这种情况下,只能手动创建索引。

使用自动索引的另一个好处是,如果目录无故损坏,很容易就能修复目录。可以暂停整个数据库,进入 Lucene 索引目录,删除此目录,重启数据库,然后 Neo4j 会为所有节点重新编写索引。但如果已经进行了手动索引,你只能返回,然后为所有节点重新编写索引。

范围查询

下面一系列幻灯片显示了范围查询:

在选择数据库的路上,我们遇到过哪些坑?(2)

我想查询“profile”(个人信息),所以我把 PROFILE 放在查询内容的前面。我想找到收入为特定数值(50500)的所有人群并且只返回最前面的两个结果。

这段代码表明,我已经有了某人的收入索引,规划程序的限值是 2。NodeIndexSeek 用这一索引来查找数值,从一个拥有 22 万人的样本数据库中进行了大约 2800 次数据库访问。

在接下来的范围查询中,我准备查找收入低于 50500 的人:

在选择数据库的路上,我们遇到过哪些坑?(2)

在这次的查询中,我们执行了 NodeByLabelScan,由于没有使用索引,我们进行了多达 43 万次数据库访问。在 Neo4j 第 2.3 版之前,schema 索引不支持范围,所以你必须得用 legacy 索引,然后直接查询 Lucene 索引,才能发挥作用。

第 2.3 版修复了这一问题;现在有了 NodeIndexSeekByRange,可在 schema 标签上提供范围索引:

在选择数据库的路上,我们遇到过哪些坑?(2)

4. 不要使用内部节点 ID

使用当前节点 ID 是个很大的诱惑,但这种做法非常不可取,这是因为在某些时刻,这种做法会导致数据库内容被删除。请阅读这篇介绍,了解更多相关内容。

Neo4j 使用增量日志。如果你删除了某个节点,最后系统会翻转节点 ID,这样你就可以重复使用这些数字。我们结合使用了节点标签和随机选择的 UUID,这样如果你的 API 始终暴露在外,就可以提供额外的安全保障。

5. 数据建模很重要

数据模型的重要程度至少和查询相当。下面的说明很有用:可以通过多重关系类型或关系上的属性来为部分关系建模。两种方法似乎同样合理,但它们的性能表现可能大相径庭。一定要了解一下 GraphAware 对这一内容的介绍。其区别在于,一方定义不同类型的 personplace 之间的关系……

在选择数据库的路上,我们遇到过哪些坑?(2)

……而另一方则表示有三种不同的属性类型:

在选择数据库的路上,我们遇到过哪些坑?(2)

性能表现提升了八倍。上述 GraphAware 的文章深入详细地解释了这一概念。

6. 优化性能

EXPLAINPROFILE 绝对是你的良师益友。别担心 Java API,而查询规划程序还很年轻,在许多情况下都比 Cypher 要快。如果你要设定基准,一定要以温备份数据库设定基准。这样就能加载 Neo4j 的数据库缓存。

7. 一定要交流!

Neo4j 拥有强大的支持社区,包括谷歌论坛、Slack 协作频道、Stack Overflow 网站和非常出色的支持团队

8. 在工具栏里添加下面的代码

借助下面的样板代码,可以检查数据库中的每个节点并修复所有问题。这一示例有时会抓取关系,但你也可以对节点或其他限定条件进行同样的操作。

不管怎样,它都能事务性地依次通过数据库中的所有节点。在本例中,每个事务是 90000 次操作,如果有需要,还可以批量更改整个数据库:

在选择数据库的路上,我们遇到过哪些坑?(2)

本文系 OneAPM 工程师整理呈现。OneAPM 能为您提供端到端的应用性能解决方案,我们支持所有常见的框架及应用服务器,助您快速发现系统瓶颈,定位异常根本原因。分钟级部署,即刻体验,性能监控从来没有如此简单。想阅读更多技术文章,请访问 OneAPM 官方技术博客

本文转自 OneAPM 官方博客

原文地址:https://dzone.com/articles/from-good-to-graph-choosing-the-right-database

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容