信号处理中FFT后的意义及常用处理方法

姓名:王柯祎

学号:20021110373T

转自 :https://blog.csdn.net/u011327754/article/details/80001123?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522160411516219724842906739%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=160411516219724842906739&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-6-80001123.pc_first_rank_v2_rank_v28&utm_term=%E4%BF%A1%E5%8F%B7%E5%A4%84%E7%90%86&spm=1018.2118.3001.4449

【嵌牛导读】总结一下信号处理中做FFT之后的作用和意义,以及常用的FFT的处理方法。

【嵌牛鼻子】快速傅里叶变换(FFT)

【嵌牛正文】

1.为什么要做FFT?

首先在信号处理过程中,由于信号的多样性和不确定性,很多情况下对信号处理时在时域很难看出信号特点和处理方法,比如线性调频、捷变频等等,但我们可以在频谱上看到频率分布和幅度分布情况,另外FFT之后我们除了可以看到信号的频域特性之外也能看到相位特性(可能很多人忽略了这点)。首先肯定一点FFT之后的信号和原信号为同一个信号,只不过是在不同基下的不同表现。

2.不同采样率的信号的FFT之后的情况,也就是FFT和采样率之间的关系。

首先奈奎斯特采样定理在此就不多解释了,就是采样率必须大于等于被采样信号最高频率的2倍。那么FFT之后频域的分辨率是多少呢?FFT之后的分辨率是:采样频率/采样点数,也就是说相同采样频率情况下,做FFT时点数越多,得到的结果分辨率越高。

补充:奈奎斯特采样定理为频域上的周期性搬移防止频谱重叠得出的结果,另外还有一个采样定理为带通采样,同样是为了防止频谱重叠,但是该频谱不重叠的前提是低频无信号,然后将高频信号进行下变频之后再做FFT得到的信号频率加上1/2采样频率就是目标频率了。不理解的可以重新翻一下信号处理课本,然后看到频域时域的关系:时域离散化频域周期化这个特性。(为了方便叙述,本文以奈奎斯特采样为理论背景,暂且不考虑带通采样,虽然原理是一样的)

3.FFT之后的信号与原信号的幅度对应关系。

为了方便叙述,再建一个信号模型,假设:采样频率为Fs,原信号频率为F,采样点数为N。那么FFT之后的结果就是N点的复数,每个点对应着一个频率,每个点复数的模值就是该频率的幅度特性,那么这个幅度和时域上的幅度的对应关系是什么呢?就是FFT之后点的复数的模值是时域信号对应频率幅度的N/2倍,再补充一点0频分量也就是直流分量在FFT之后的模值是时域模值的N倍。

4.FFT之后的信号与源信号的相位对应关系。

由于FFT之后为复数,复数的实虚部分布就表示时域的相位信息,就是arctan(虚部/实部)。

5.FFT之后的结果怎么去看哪个点的频率是多少?

这个问题刚开始学完数字信号处理我也有点困扰,但是只要你仔细分析一下就会发现:FFT之后的频谱是在正半轴上的,然后根据前面说的频率分辨率就可以看出最后一个点的下一个点代表的频率为采样频率,也就是频率范围为0Hz到采样频率范围,但是由于离散采样之后导致频谱周期性变化,导致后半个频谱被下一个周期的频谱重叠交叉,所以我们只看前半个频谱,这也是我们根据奈奎斯特采样定律前提下采样(如果是带通采样就要看后半个频谱了,可以思考一下为什么?)。这样的话就很清楚的可以去看频谱的任何一点的频率是多少了,根据第一个点频率为0,然后等差数列,间隔为频率分辨率自己去数,但是不能超过1/2采样率。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351