[NLP]手把手教你使用Python实现一个句子生成器

本文主要介绍如何通过预先设定好的语法规则以及单词,通过Python来自动生成一些句子。

解析语法

在生成句子之前,我们需要先告诉机器生成句子的语法。

因此,我们先定义一个简单的语法:

simple_grammar = """
sentence => noun_phrase verb_phrase
noun_phrase => Article Adj* noun
Adj* => null | Adj Adj*
verb_phrase => verb noun_phrase
Article =>  一个 | 这个
noun =>   女人 |  篮球 | 桌子 | 小猫
verb => 看着   |  坐在 |  听着 | 看见
Adj =>  蓝色的 | 好看的 | 小小的
"""

上面的语法其实可以表示成一棵语法树(Syntax Tree),对此感兴趣的话可以参考以下文章:

语法说明

  1. sentence => noun_phrase verb_phrase:表示一个 sentencenoun_phraseverb_phrase 组成。
  2. Adj => 蓝色的 | 好看的 | 小小的:表示 Adj 一共有 蓝色的 | 好看的 | 小小的 3个选择。

基于上面的两条规说明,我们就能够读懂上面的语法规则。

观察上面的语法,我们可以发现一共有两类词汇,左边的词汇是可以继续拓展的,右边的词汇如果不在左边,那么是不可拓展的。

我们先以adj为例,编写代码。Adj语法如下:

adj_grammar = """
Adj* => null | Adj Adj*
Adj =>  蓝色的 | 好看的 | 小小的

"""

根据上面的adj_grammar字符串语法规则,我们将其解析成字典格式:

# 解析语法
def create_grammar(grammar_str, split = '=>', line_split = '\n'):
    grammar = {}
    for line in grammar_str.split(line_split):
        if not line.strip():
            continue    # 跳过空行
        else:
            exp, stmt = line.split(split)
            grammar[exp.strip()] = [s.split() for s in stmt.split('|')]
    return grammar

结果如下:

接着我们再将上面的simple_grammar语法规则解析成字典格式:

至此,我们已经能够使用代码解析出上面的语法规则了。

生成句子

最后,我们编写代码根据上面的语法规则,自动生成句子:

# 生成句子
def generate(gram, target):
    if target not in gram:
        return target    # means target is a terminal expression
    # target in gram 意味着target是可以继续拓展下去的
    else:
        expaned = [generate(gram, t) for t in random.choice(gram[target])]
        return ''.join([e if e!='/n' else '\n' for e in expaned if e != 'null'])

利用编写的代码,随机生成一个句子:

我们可以再定义两个语法,看一下效果如何:

# 在西部世界里
# 一个”人类“的语言可以定义为:

human = """
human = 自己 寻找 活动
自己 = 我 | 俺 | 我们 
寻找 = 找找 | 想找点 
活动 = 乐子 | 玩的
"""


# 一个“接待员”的语言可以定义为

host = """
host = 寒暄 报数 询问 业务相关 结尾 
报数 = 我是 数字 号 ,
数字 = 单个数字 | 数字 单个数字 
单个数字 = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
寒暄 = 称谓 打招呼 | 打招呼
称谓 = 人称 ,
人称 = 先生 | 女士 | 小朋友
打招呼 = 你好 | 您好 
询问 = 请问你要 | 您需要
业务相关 = 玩玩 具体业务
玩玩 = null
具体业务 = 喝酒 | 打牌 | 打猎 | 赌博
结尾 = 吗?
"""

“人类”和“接待员”各自随机生成5个句子:

可以看到,我们已经成功地通过自定义的语法规则来让计算机自动生成句子了。

小结

本文主要通过解析语法树,自动生成句子等方法,实现了一个自动生成句子的程序。

看完这篇文章,大家也可以设计实现自己的句子生成器。

上面生成了许多句子,但是,我们如何判断哪些句子更为合理(符合人类说话习惯),哪些句子不合理?这时候就需要用到语言模型了,关于语言模型的相关概念及代码实现,将会在后面的文章讲到,敬请期待。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353