均值、标准差、偏度、峰度的绘制

练习:均值、标准差、偏度、峰度的绘制

均值

标准差

偏度

峰度

import numpy as np
from scipy import stats
import math
import matplotlib as mpl
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
# import seaborn


def calc_statistics(x):
    n = x.shape[0]  # 样本个数

    # 手动计算
    m = 0
    m2 = 0
    m3 = 0
    m4 = 0
    for t in x:
        m += t
        m2 += t*t
        m3 += t**3
        m4 += t**4
    m /= n
    m2 /= n
    m3 /= n
    m4 /= n

#参考上面的偏度峰度公式
    mu = m
    sigma = np.sqrt(m2 - mu*mu)
    skew = (m3 - 3*mu*m2 + 2*mu**3) / sigma**3
    kurtosis = (m4 - 4*mu*m3 + 6*mu*mu*m2 - 4*mu**3*mu + mu**4) / sigma**4 - 3
    print('手动计算均值、标准差、偏度、峰度:', mu, sigma, skew, kurtosis)

    # 使用系统函数验证
    mu = np.mean(x, axis=0)
    sigma = np.std(x, axis=0)
    skew = stats.skew(x)
    kurtosis = stats.kurtosis(x)
    return mu, sigma, skew, kurtosis


if __name__ == '__main__':
    d = np.random.randn(10000)
    print(d)
    print(d.shape)
    mu, sigma, skew, kurtosis = calc_statistics(d)
    print('函数库计算均值、标准差、偏度、峰度:', mu, sigma, skew, kurtosis)
    # 一维直方图
    mpl.rcParams['font.sans-serif'] = 'SimHei'
    mpl.rcParams['axes.unicode_minus'] = False
    plt.figure(num=1, facecolor='w')
    y1, x1, dummy = plt.hist(d, bins=50, normed=True, color='g', alpha=0.75, edgecolor='k')
    t = np.arange(x1.min(), x1.max(), 0.05)
    y = np.exp(-t**2 / 2) / math.sqrt(2*math.pi)
    plt.plot(t, y, 'r-', lw=2)
    plt.title('高斯分布,样本个数:%d' % d.shape[0])
    plt.grid(True)
    # plt.show()

    d = np.random.randn(100000, 2)
    mu, sigma, skew, kurtosis = calc_statistics(d)
    print('函数库计算均值、标准差、偏度、峰度:', mu, sigma, skew, kurtosis)

    # 二维图像
    N = 30
    density, edges = np.histogramdd(d, bins=[N, N])
    print('样本总数:', np.sum(density))
    density /= density.max()
    x = y = np.arange(N)
    print('x = ', x)
    print('y = ', y)
    t = np.meshgrid(x, y)
    print(t)
    fig = plt.figure(facecolor='w')
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(t[0], t[1], density, c='r', s=50*density, marker='o', depthshade=True)
    ax.plot_surface(t[0], t[1], density, cmap=cm.Accent, rstride=1, cstride=1, alpha=0.9, lw=0.75, edgecolor='k')
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    plt.title('二元高斯分布,样本个数:%d' % d.shape[0], fontsize=15)
    plt.tight_layout(0.1)
    plt.show()

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,753评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,668评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,090评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,010评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,054评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,806评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,484评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,380评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,873评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,021评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,158评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,838评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,499评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,044评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,159评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,449评论 3 374
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,136评论 2 356

推荐阅读更多精彩内容