最近在做一个地图定位的功能,遇到一个问题:就是定位的坐标始终有偏差大概几百米距离。
查阅资料了解到是坐标系问题。目前常见的坐标系有三种:地球坐标(WGS84,国际公认坐标),火星坐标(GCJ02,国家标准,适用于高德百度地图大陆+港澳部分、Google地图大陆部分),百度坐标(BD09,适用于百度地图大陆+港澳台部分)。坐标系需要和地图关连才有意义,只有正确匹配地图坐标系的坐标才能在该地图上完美标识位置,否则就会存在偏移。
iOS系统上通过定位服务CLLocation相关接口获取定位信息时,获取的经纬度坐标系是WGS84地球坐标,如果直接将该坐标系在iOS系统地图中打点,会发现存在偏移,因为iOS系统地图查看国内时使用的是高德地图数据,因此只接受GCJ02火星坐标。所以如果我们是直接使用系统的定位服务,而不是第三方SDK的话,就需要将WGS84编码转成GCJ02就好了
const double a = 6378245.0;
const double ee = 0.00669342162296594323;
const double pi = 3.14159265358979324;
+ (CLLocationCoordinate2D)transformFromWGSToGCJ:(CLLocationCoordinate2D)wgsLoc {
CLLocationCoordinate2D adjustLoc;
if ([self isLocationOutOfChina:wgsLoc]) {
adjustLoc = wgsLoc;
} else {
double adjustLat = [self transformLatWithX:wgsLoc.longitude - 105.0 withY:wgsLoc.latitude - 35.0];
double adjustLon = [self transformLonWithX:wgsLoc.longitude - 105.0 withY:wgsLoc.latitude - 35.0];
double radLat = wgsLoc.latitude / 180.0 * pi;
double magic = sin(radLat);
magic = 1 - ee * magic * magic;
double sqrtMagic = sqrt(magic);
adjustLat = (adjustLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * pi);
adjustLon = (adjustLon * 180.0) / (a / sqrtMagic * cos(radLat) * pi);
adjustLoc.latitude = wgsLoc.latitude + adjustLat;
adjustLoc.longitude = wgsLoc.longitude + adjustLon;
}
return adjustLoc;
}
// 判断是不是在中国
+ (BOOL)isLocationOutOfChina:(CLLocationCoordinate2D)location {
if (location.longitude < 72.004 || location.longitude > 137.8347 || location.latitude < 0.8293 || location.latitude > 55.8271) {
return YES;
}
return NO;
}
+ (double)transformLatWithX:(double)x withY:(double)y {
double lat = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + 0.1 * x * y + 0.2 * sqrt(fabs(x));
lat += (20.0 * sin(6.0 * x * pi) + 20.0 *sin(2.0 * x * pi)) * 2.0 / 3.0;
lat += (20.0 * sin(y * pi) + 40.0 * sin(y / 3.0 * pi)) * 2.0 / 3.0;
lat += (160.0 * sin(y / 12.0 * pi) + 3320 * sin(y * pi / 30.0)) * 2.0 / 3.0;
return lat;
}
+ (double)transformLonWithX:(double)x withY:(double)y {
double lon = 300.0 + x + 2.0 * y + 0.1 * x * x + 0.1 * x * y + 0.1 * sqrt(fabs(x));
lon += (20.0 * sin(6.0 * x * pi) + 20.0 * sin(2.0 * x * pi)) * 2.0 / 3.0;
lon += (20.0 * sin(x * pi) + 40.0 * sin(x / 3.0 * pi)) * 2.0 / 3.0;
lon += (150.0 * sin(x / 12.0 * pi) + 300.0 * sin(x / 30.0 * pi)) * 2.0 / 3.0;
return lon;
}
参考大神文章 http://blog.csdn.net/zhengang007/article/details/52858198