scCustomize:自定义可视化你的单细胞数据(二)

简介

scCustomize是一个单细胞转录组数据可视化的R包,里面集合了一些常用的数据可视化方法,可以与Seurat包进行很好的联用,支持Seurat,LIGER和SCE等常用对象的数据。

image.png

R包安装

直接使用devtools包进行安装

devtools::install_github(repo = "samuel-marsh/scCustomize")
remotes::install_github(repo = "samuel-marsh/scCustomize")

实例演示

在本教程中,我将使用 SeuratData 包中的 HCA 骨髓单细胞数据。

QC plot

所有 scRNA-seq 数据分析的第一步就是执行一些 QC 检查和绘图,以便可以适当地过滤数据。scCustomize 包含许多功能,可用于快速轻松地生成一些最相关的 QC 图。

library(tidyverse)
library(patchwork)
library(Seurat)
library(scCustomize)
library(qs)

# Load Example Dataset
hca_bm <- hcabm40k.SeuratData::hcabm40k

# Add pseudo group variable just for this vignette
hca_bm@meta.data$group[hca_bm@meta.data$orig.ident == "MantonBM1" | hca_bm@meta.data$orig.ident ==
    "MantonBM2" | hca_bm@meta.data$orig.ident == "MantonBM3" | hca_bm@meta.data$orig.ident == "MantonBM4"] <- "Group 1"

hca_bm@meta.data$group[hca_bm@meta.data$orig.ident == "MantonBM5" | hca_bm@meta.data$orig.ident ==
    "MantonBM6" | hca_bm@meta.data$orig.ident == "MantonBM7" | hca_bm@meta.data$orig.ident == "MantonBM8"] <- "Group 2"

添加线粒体和核糖体基因百分比

# These defaults can be run just by providing accepted species name
hca_bm <- Add_Mito_Ribo_Seurat(seurat_object = hca_bm, species = "Human")
image.png

注意:目前Add_Mito_Ribo_Seurat函数只支持以上物种计算线粒体和核糖体基因百分比,如果需要,请在 GitHub 上提交问题以获取其他默认物种。请包括线粒体和核糖体基因的正则表达式模式或基因列表,我将在函数中添加额外的内置默认值。

# Using gene name patterns
hca_bm <- Add_Mito_Ribo_Seurat(seurat_object = hca_bm, species = "other", mito_pattern = "regexp_pattern",
    ribo_pattern = "regexp_pattern")

# Using feature name lists
mito_gene_list <- c("gene1", "gene2", "etc")
ribo_gene_list <- c("gene1", "gene2", "etc")
hca_bm <- Add_Mito_Ribo_Seurat(seurat_object = hca_bm, species = "other", mito_features = mito_gene_list,
    ribo_features = ribo_gene_list)

# Using combination of gene lists and gene name patterns
hca_bm <- Add_Mito_Ribo_Seurat(seurat_object = hca_bm, species = "Human", mito_features = mito_gene_list,
    ribo_pattern = "regexp_pattern")

Plotting QC Metrics

  • VlnPlot-Based QC Plots
    scCustomize 包提供了以下4种函数绘制VlnPlot-Based QC Plots.
  • QC_Plots_Genes() Plots genes per cell/nucleus.
  • QC_Plots_UMIs() Plots UMIs per cell/nucleus.
  • QC_Plots_Mito() Plots mito% (named “percent_mito”) per cell/nucleus.
  • QC_Plots_Feature() Plots “feature” per cell/nucleus. Using parameter feature to allow plotting of any applicable named feature in object@meta.data slot.
# All functions contain
p1 <- QC_Plots_Genes(seurat_object = hca_bm, low_cutoff = 800, high_cutoff = 5500)
p2 <- QC_Plots_UMIs(seurat_object = hca_bm, low_cutoff = 1200, high_cutoff = 45000)
p3 <- QC_Plots_Mito(seurat_object = hca_bm, high_cutoff = 20)

wrap_plots(p1, p2, p3, ncol = 3)
image.png

同时,还提供了一下可选择的自定义参数:

  • plot_title: Change plot title
  • x_axis_label/y_axis_label: Change axis labels.
  • x_lab_rotate: Should x-axis label be rotated 45 degrees?
  • y_axis_log: Should y-axis in linear or log10 scale.
p1 <- QC_Plots_UMIs(seurat_object = hca_bm, low_cutoff = 1200, high_cutoff = 45000, pt.size = 0.1)
p2 <- QC_Plots_UMIs(seurat_object = hca_bm, low_cutoff = 1200, high_cutoff = 45000, pt.size = 0.1,
    y_axis_log = TRUE)

wrap_plots(p1, p2, ncol = 2)
image.png
  • FeatureScatter-Based QC Plots
    scCustomize 包提供了以下3种函数绘制FeatureScatter-Based QC Plots.
  • QC_Plot_UMIvsGene() Plots genes vs UMIs per cell/nucleus
  • QC_Plot_GenevsFeature() Plots Genes vs. “feature” per cell/nucleus. Using parameter feature1 to allow plotting of any applicable named feature in object@meta.data slot.
  • QC_Plot_UMIvsFeature() Plots UMIs vs. “feature” per cell/nucleus. Using parameter feature1 to allow plotting of any applicable named feature in object@meta.data slot.
# All functions contain
QC_Plot_UMIvsGene(seurat_object = hca_bm, low_cutoff_gene = 800, high_cutoff_gene = 5500, low_cutoff_UMI = 500,
    high_cutoff_UMI = 50000)
QC_Plot_GenevsFeature(seurat_object = hca_bm, feature1 = "percent_mito", low_cutoff_gene = 800,
    high_cutoff_gene = 5500, high_cutoff_feature = 20)
image.png
QC_Plot_UMIvsGene(seurat_object = hca_bm, meta_gradient_name = "percent_mito", low_cutoff_gene = 800,
    high_cutoff_gene = 5500, high_cutoff_UMI = 45000)
QC_Plot_UMIvsGene(seurat_object = hca_bm, meta_gradient_name = "percent_mito", low_cutoff_gene = 800,
    high_cutoff_gene = 5500, high_cutoff_UMI = 45000, meta_gradient_low_cutoff = 20)
image.png

计算每个样本的QC值的中位数

scCustomize 包提供了Median_Stats()函数,可以快速计算不同QC指标 (Genes/, UMIs/, %Mito/Cell, etc)的中位数。

median_stats <- Median_Stats(seurat_object = hca_bm, group_by_var = "orig.ident")
image.png

绘制QC指标中位数值
scCustomize 包提供了以下函数绘制QC指标的中位数值

  • Plot_Median_Genes()
  • Plot_Median_UMIs()
  • Plot_Median_Mito()
  • Plot_Median_Other()
Plot_Median_Genes(seurat_object = hca_bm, group_by = "group")
Plot_Median_UMIs(seurat_object = hca_bm, group_by = "group")
Plot_Median_Mito(seurat_object = hca_bm, group_by = "group")
Plot_Median_Other(seurat_object = hca_bm, median_var = "percent_ribo", group_by = "group")
image.png

内置自定义颜色画板

(1)Continuous Palettes

  • viridis_plasma_dark_high
  • viridis_plasma_light_high
  • viridis_magma_dark_high
  • viridis_magma_light_high
  • viridis_inferno_dark_high
  • viridis_inferno_light_high
  • viridis_dark_high
  • viridis_light_high
image.png

(2)Discrete Palettes

  • alphabet (24)
  • alphabet2 (24)
  • glasbey (32)
  • polychrome (36)
  • stepped (24)
  • ditto_seq (40)
  • varibow (Dynamic)
PalettePlot(palette = DiscretePalette_scCustomize(num_colors = 26, palette = "alphabet"))
PalettePlot(palette = c("color1", "color2", ...)
image.png
image.png
# Save as variable to global environment
polychrome_pal <- DiscretePalette_scCustomize(num_colors = 36, palette = "polychrome")

# Call within another function
DimPlot(object = obj_name, cols = DiscretePalette_scCustomize(num_colors = 26, palette = "polychrome"))

DimPlot_scCustom(seurat_object = pbmc)
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容