描述:
输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整数组成一
个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。
例子说明:
例如输入的数组为{1, -2, 3, 10, -4, 7, 2, -5},和最大的子数组为{3, 10, -4, 7, 2}。
因此输出为该子数组的和18 。
二、解题思路
解法一:举例分析数组的规律。
我们试着从头到尾逐个累加示例数组中的每个数字。初始化和为0。第一步加上第
一个数字1, 此时和为1。接下来第二步加上数字-2,和就变成了-1。第三步刷上数
字3。我们注意到由于此前累计的和是-1 ,小于0,那如果用-1 加上3 ,得到的和
是2 , 比3 本身还小。也就是说从第一个数字开始的子数组的和会小于从第三个数
字开始的子数组的和。因此我们不用考虑从第一个数字开始的子数组,之前累计的
和也被抛弃。
我们从第三个数字重新开始累加,此时得到的和是3 。接下来第四步加10,得到和
为13 。第五步加上-4, 和为9。我们发现由于-4 是一个负数,因此累加-4 之后得
到的和比原来的和还要小。因此我们要把之前得到的和13 保存下来,它有可能是最
大的子数组的和。第六步加上数字7,9 加7 的结果是16,此时和比之前最大的和
13 还要大, 把最大的子数组的和由13更新为16。第七步加上2,累加得到的和为
18,同时我们也要更新最大子数组的和。第八步加上最后一个数字-5,由于得到的
和为13 ,小于此前最大的和18,因此最终最大的子数组的和为18 ,对应的子数组
是{3, 10, -4, 7, 2}。
fun findGreadMax(arr:Array<Int>):Long {
if (arr.isEmpty()) {
throw IllegalArgumentException("illegal Array")
}
var max = Long.MIN_VALUE
var curMax = 0L
for (i in arr) {
if (curMax <= 0) {
curMax = i.toLong()
} else {
curMax += i
}
if (max < curMax) {
max = curMax
}
}
return max
}