题目
This time, you are supposed to find A+B where A and B are two polynomials.
Input
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 ... NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, ..., K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < ... < N2 < N1 <=1000.
Output
For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample Output
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output
3 2 1.5 1 2.9 0 3.2
题目大意
输出两个多项式相加后的多项式。
思路
常规思路是分别用double数组来记录每一个多项式:数组的下标为指数,对应的值为系数(当然这只适用于正整数指数的情况)。当数组的值为0(即系数为0)时,表示多项式中不存在指数为该下标的项(用于判读是否输出)。将读入的两个多项式数组按对应下标相加,存入第三个数组中,即为目标多项式数组。
因第一次提交时有一个测试点未通过,一时想不到问题所在(后已修正),就对原有代码进行了改进:只创建一个目标多项式数组,每一次读入、相加都直接在该数组中进行。
代码实现—三数组版
#include <stdio.h>
#define maxSize 1001
struct poly_arr
{
double poly[maxSize];
int max_index; // 系数非零项的最大指数
int count; // 非零项个数
};
void init_poly(poly_arr &X)
{
int i;
X.max_index = 0;
X.count = 0;
for (i=0; i < maxSize; ++i)
X.poly[i] = 0;
}
void insert_poly(poly_arr &X)
{
int expo;
double coef;
scanf("%d %lf", &expo, &coef);
X.poly[expo] = coef;
++X.count;
if (X.max_index < expo) // 更新多项式最大指数
X.max_index = expo;
}
void add_poly(poly_arr A, poly_arr B, poly_arr &C)
{
int i;
int max;
max = A.max_index > B.max_index ? A.max_index : B.max_index;
for (i = 0; i <= max; ++i)
if (A.poly[i] != 0.0 || B.poly[i] != 0.0)
{
C.poly[i] = A.poly[i] + B.poly[i];
if (C.poly[i] != 0.0) // 规范应该为fabs(x - 0.0) > 1e-8
{
++C.count;
C.max_index = i; // 系数非零时才更新最大指数
}
}
}
void print_poly(poly_arr X)
{
int i;
printf("%d", X.count);
for (i = X.max_index; i >= 0; --i)
if (X.poly[i] != 0.0)
printf(" %d %.1lf", i, X.poly[i]);
}
int main(void)
{
poly_arr A, B, C;
int k;
int i;
init_poly(A);
init_poly(B);
init_poly(C);
scanf("%d", &k);
for (i = 0; i < k; ++i)
insert_poly(A);
scanf("%d", &k);
for (i = 0; i < k; ++i)
insert_poly(B);
add_poly(A, B, C);
print_poly(C);
}
代码实现—单数组版
#include <stdio.h>
#define maxSize 1001
struct poly
{
double arr[maxSize];
int count;
int max_index;
};
void init_poly(poly &X)
{
X.count = 0;
X.max_index = 0;
for (int i = 0;i < maxSize; ++i)
X.arr[i] = 0;
}
void add_poly(poly &X)
{
double coef;
int expo;
scanf("%d %lf", &expo, &coef);
if (X.arr[expo] == 0.0) // 原系数为零时项数+1
++X.count;
X.arr[expo] = X.arr[expo] + coef;
if (X.arr[expo] == 0.0) // 相加后系数为零时项数-1
--X.count;
if (X.max_index < expo) // 更新最大指数
X.max_index = expo;
}
void print_poly(poly X)
{
printf("%d", X. count);
for (int i = X.max_index; i >= 0; --i)
if (X.arr[i] != 0.0)
printf(" %d %.1lf", i, X.arr[i]);
}
int main(void)
{
int i, j, K;
poly C;
init_poly(C);
for (i = 0; i < 2; ++i)
{
scanf("%d", &K);
for (j=0; j<K; ++j)
add_poly(C);
}
print_poly(C);
}