笔记《概率图模型基于R语言》PDF代码+《Pytorch 深度学习》PDF代码总结

深度学习为世界上的智能系统(比如Google Voice、Siri和Alexa)提供了动力。随着硬件(如GPU)和软件框架(如PyTorch、Keras、TensorFlow和CNTK)的进步以及大数据的可用性,人们在文本、视觉和分析等领域更容易实施相应问题的解决方案。

使用文本数据分词、向量化,通过构建情感分类器训练词向量,下载IMDB数据并对文本分词,构建词表生成向量的批数据,使用词向量创建网络模型,训练模型,使用预训练的词向量,下载词向量,在模型中加载词向量,冻结embedding层权重,递归神经网络(RNN),LSTM,长期依赖,LSTM网络,基于序列数据的卷积网络。

使用PyTorch轻松开发深度学习应用程序,推荐学习《Pytorch 深度学习》。

Pytorch框架《Pytorch 深度学习》中文PDF+英文PDF+mobi+epub+源代码

《Pytorch 深度学习》中文PDF,212页,带目录,文字可复制;《Pytorch 深度学习》英文PDF,250页,带目录,文字可复制;配套源代码。

下载: https://pan.baidu.com/s/1a6HUgw0DR1jvLcQmkejhPQ   提取码: wpxm

《Pytorch 深度学习》对当今前沿的深度学习库PyTorch进行了讲解。凭借其易学习性、高效性以及与Python开发的天然亲近性,PyTorch获得了深度学习研究人员以及数据科学家们的关注。从PyTorch的安装讲起,然后介绍了为现代深度学习提供驱动力的多个基础模块,还介绍了使用CNN、RNN、LSTM以及其他网络模型解决问题的方法。对多个先进的深度学习架构的概念(比如ResNet、DenseNet、Inception和Seq2Seq)进行了阐述,但没有深挖其背后的数学细节。与GPU计算相关的知识、使用PyTorch训练模型的方法,以及用来生成文本和图像的复杂神经网络(如生成网络),也有所涵盖。

概率图模型结合了概率论与图论的知识,提供了一种简单的可视化概率模型的方法,在人工智能、机器学习和计算机视觉等领域有着广阔的应用前景。

《概率图模型基于R语言》中文PDF+英文PDF+源代码:《概率图模型基于R语言》中文PDF,199页,带书签目录,文字可以复制。《概率图模型基于R语言》英文PDF,250页,带书签目录,文字可以复制。配套源代码。

下载: https://pan.baidu.com/s/1_NEP6w1Ex14QqQm_Y5uYUg  提取码: 7u9y

《概率图模型基于R语言》旨在帮助读者学习使用概率图模型,理解计算机如何通过贝叶斯模型和马尔科夫模型来解决现实世界的问题,同时教会读者选择合适的R语言程序包、合适的算法来准备数据并建立模型。《概率图模型基于R语言》适合各行业的数据科学家、机器学习爱好者和工程师等人群阅读、使用。

学习深度学习时,我想《Python深度学习》应该是大多数机器学习爱好者必读的书。书最大的优点是框架性,能提供一个“整体视角”,在脑中建立一个完整的地图,知道哪些常用哪些不常用,再据此针对性地查漏补缺就比较方便了,而如果直接查文档面对海量的API往往会无所适从。

《Python深度学习》中文PDF,314页,带目录,彩色配图,文字能够复制;英文PDF,386页,带目录和书签,彩色配图,能够复制;配套源代码。

下载: https://pan.baidu.com/s/1AWvcyx9wt-T0Z1nzZNXHKA   提取码: 8ams

更好的标题应为基于Keras的深度学习。全书分为两大部分,第一部分是对于深度学习的全局介绍,包括其与人工智能、机器学习的关系,一些相关的基本概念如张量(tensor)、梯度下降、神经网络、反向传播算法等等。其中第三章举了三个简单的例子,分别对应的任务是二分类、多分类和回归,让读者快速了解 Keras 的基本使用方法,熟悉使用深度学习处理数据问题的典型流程。第二部分是关于深度学习在计算机视觉和自然语言处理中的实际应用,重点讲解卷积神经网络和循环神经网络,讲了 VAE 和 GAN。

这些内容从另外的角度阐述了一些有关梯度,损失,深度学习的应用,以及这些应用带给我们的启示。所以也适合进阶。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,548评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,497评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,990评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,618评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,618评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,246评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,819评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,725评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,268评论 1 320
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,356评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,488评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,181评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,862评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,331评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,445评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,897评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,500评论 2 359

推荐阅读更多精彩内容