从原理到实战:如何通过布隆过滤器防止缓存击穿

为什么引入

我们的业务中经常会遇到穿库的问题,通常可以通过缓存解决。如果数据维度比较多,结果数据集合比较大时,缓存的效果就不明显了。

因此为了解决穿库的问题,我们引入Bloom Filter。

适合的场景

数据库防止穿库 Google Bigtable,Apache HBase和Apache Cassandra以及Postgresql 使用BloomFilter来减少不存在的行或列的磁盘查找。避免代价高昂的磁盘查找会大大提高数据库查询操作的性能。如同一开始的业务场景。如果数据量较大,不方便放在缓存中。需要对请求做拦截防止穿库。

缓存宕机 缓存宕机的场景,使用布隆过滤器会造成一定程度的误判。原因是除了Bloom Filter 本身有误判率,宕机之前的缓存不一定能覆盖到所有DB中的数据,当宕机后用户请求了一个以前从未请求的数据,这个时候就会产生误判。当然,缓存宕机时使用布隆过滤器作为应急的方式,这种情况应该也是可以忍受的。

WEB拦截器 相同请求拦截防止被攻击。用户第一次请求,将请求参数放入BloomFilter中,当第二次请求时,先判断请求参数是否被BloomFilter命中。可以提高缓存命中率

恶意地址检测 chrome 浏览器检查是否是恶意地址。首先针对本地BloomFilter检查任何URL,并且仅当BloomFilter返回肯定结果时才对所执行的URL进行全面检查(并且用户警告,如果它也返回肯定结果)。

比特币加速 bitcoin 使用BloomFilter来加速钱包同步。

开源项目地址:

https://github.com/luw2007/bloomfilter

我们先看看一般业务缓存流程:

先查询缓存,缓存不命中再查询数据库。然后将查询结果放在缓存中即使数据不存在,也需要创建一个缓存,用来防止穿库。

这里需要区分一下数据是否存在。如果数据不存在,缓存时间可以设置相对较短,防止因为主从同步等问题,导致问题被放大。

这个流程中存在薄弱的问题是,当用户量太大时,我们会缓存大量数据空数据,并且一旦来一波冷用户,会造成雪崩效应。

对于这种情况,我们产生第二个版本流程:redis过滤冷用户缓存流程

我们将数据库里面中命中的用户放在redis的set类型中,设置不过期。这样相当把redis当作数据库的索引,只要查询redis,就可以知道是否数据存在。

redis中不存在就可以直接返回结果。如果存在就按照上面提到一般业务缓存流程处理。

聪明的你肯定会想到更多的问题:

redis本身可以做缓存,为什么不直接返回数据呢?

如果数据量比较大,单个set,会有性能问题?

业务不重要,将全量数据放在redis中,占用服务器大量内存。投入产出不成比例?

问题1需要区分业务场景,结果数据少,我们是可以直接使用redis作为缓存,直接返回数据。结果比较大就不太适合用redis存放了。比如ugc内容,一个评论里面可能存在上万字,业务字段多。

redis使用有很多技巧。bigkey 危害比较大,无论是扩容或缩容带来的内存申请释放, 还是查询命令使用不当导致大量数据返回,都会影响redis的稳定。这里就不细谈原因及危害了。

解决bigkey 方法很简单。我们可以使用hash函数来分桶,将数据分散到多个key中。减少单个key的大小,同时不影响查询效率。

问题3是redis存储占用内存太大。因此我们需要减少内存使用。重新思考一下引入redis的目的。redis像一个集合,整个业务就是验证请求的参数是否在集合中。

这个结构就像洗澡的时候用的双向阀门:左边热水,右边冷水。

大部分的编程语言都内置了filter。拿python举例,filter函数用于过滤序列, 过滤掉不符合条件的元素,返回由符合条件元素组成的列表。

我们看个例子:

集合s中存在 2,4两个数字,我们需要查询 0,1,2 那些在集合s中。 lambda x:x in s构造一个匿名函数,判断入参x是否在集合s中。过滤器filter依次对列表中的数字执行匿名函数。最终返回列表[2]。

redis中实现set用了两种结构:intset和hash table。非数字或者大量数字时都会退化成hash table。那么是否好的算法可以节省hash table的大小呢?

其实早在1970年由Burton Howard Bloom提出的布隆过滤器(英语:Bloom Filter)。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。

它的优点是空间效率和查询时间都远远超过一般的算法, 缺点是有一定的误识别率和删除困难。

BloomFilter原理

我们常见的将业务字段拼接之后md5,放在一个集合中。md5生成一个固定长度的128bit的串。如果我们用bitmap来表示,则需要

判断一个值在不在,就变成在这个bitmap中判断所在位是否为1。但是我们全世界的机器存储空间也无法存储下载。因此我们只能分配有限的空间来存储。比如:

当只有一个hash函数时:很容易发生冲突。

可以看到上面1和2的hash结果都是7,发生冲突。如果增加hash函数,会发生什么情况?

我们使用更多的hash函数和更大的数据集合来测试。得到下面这张表

由此可以看到当增加hash方法能够有效的降低碰撞机率。比较好的数据如下:

但是增加了hash方法之后,会降低空间的使用效率。当集合占用总体空间达到25%的时候, 增加hash 的效果已经不明显

上面的使用多个hash方法来降低碰撞就是BloomFilter的核心思想。

算法优点:

数据空间小,不用存储数据本身。

算法本身缺点:

元素可以添加到集合中,但不能被删除。

匹配结果只能是“绝对不在集合中”,并不能保证匹配成功的值已经在集合中。

当集合快满时,即接近预估最大容量时,误报的概率会变大。

数据占用空间放大。一般来说,对于1%的误报概率,每个元素少于10比特,与集合中的元素的大小或数量无关。查询过程变慢,hash函数增多,导致每次匹配过程,需要查找多个位(hash个数)来确认是否存在。

对于BloomFilter的优点来说,缺点都可以忽略。毕竟只需要kN的存储空间就能存储N个元素。空间效率十分优秀。

如何使用BloomFilter

BloomFilter 需要一个大的bitmap来存储。鉴于目前公司现状,最好的存储容器是redis。从github topics: bloom-filter中经过简单的调研。

redis集成BloomFilter方案:

原生python 调用setbit 构造 BloomFilter

lua脚本

Rebloom - Bloom Filter Module for Redis (注:redis Module在redis4.0引入)

使用hiredis 调用redis pyreBloom

原生python 方法太慢,lua脚本和module 部署比较麻烦。于是我们推荐使用pyreBloom,底层使用。

从文件命名上可以看到bloom 使用c编写。pyreBloom 使用cython编写。

bloom.h 里面实现BloomFilter的核心逻辑,完成与redis server的交互;hash函数;添加,检查和删除方法的实现。

pyreBloom.pyx

import math

import random

cimport bloom

class pyreBloomException(Exception):

'''Some sort of exception has happened internally'''

pass

cdef class pyreBloom(object):

cdef bloom.pyrebloomctxt context

cdef bytes key

property bits:

def __get__(self):

return self.context.bits

property hashes:

def __get__(self):

return self.context.hashes

def __cinit__(self, key, capacity, error, host='127.0.0.1', port=6379,

password='', db=0):

self.key = key

if bloom.init_pyrebloom(&self.context, self.key, capacity,

error, host, port, password, db):

raise pyreBloomException(self.context.ctxt.errstr)

def __dealloc__(self):

bloom.free_pyrebloom(&self.context)

def delete(self):

bloom.delete(&self.context)

def put(self, value):

if getattr(value, '__iter__', False):

r = [bloom.add(&self.context, v, len(v)) for v in value]

r = bloom.add_complete(&self.context, len(value))

else:

bloom.add(&self.context, value, len(value))

r = bloom.add_complete(&self.context, 1)

if r < 0:

raise pyreBloomException(self.context.ctxt.errstr)

return r

def add(self, value):

return self.put(value)

def extend(self, values):

return self.put(values)

def contains(self, value):

#If the object is 'iterable'...

if getattr(value, '__iter__', False):

r = [bloom.check(&self.context, v, len(v)) for v in value]

r = [bloom.check_next(&self.context) for i in range(len(value))]

if (min(r) < 0):

raise pyreBloomException(self.context.ctxt.errstr)

return [v for v, included in zip(value, r) if included]

else:

bloom.check(&self.context, value, len(value))

r = bloom.check_next(&self.context)

if (r < 0):

raise pyreBloomException(self.context.ctxt.errstr)

return bool(r)

def __contains__(self, value):

return self.contains(value)

def keys(self):

'''Return a list of the keys used in this bloom filter'''

return [self.context.keys[i] for i in range(self.context.num_keys)]

原生pyreBloom方法:

cdef class pyreBloom(object):

cdef bloom.pyrebloomctxt context

cdef bytes

property bits:

property hashes:

// 使用的hash方法数

def delete(self):

// 删除,会在redis中删除

def put(self, value):

// 添加 底层方法, 不建议直接调用

def add(self, value):

// 添加单个元素,调用put方法

def extend(self, values):

// 添加一组元素,调用put方法

def contains(self, value):

// 检查是否存在,当`value`可以迭代时,返回`[value]`, 否则返回`bool`

def keys(self):

// 在redis中存储的key列表

由于pyreBloom使用hiredis库,本身没有重连等逻辑,于是做了简单的封装。

#coding=utf-8

'''

bloom filter 基础模块

可用方法:

extend, keys, contains, add, put, hashes, bits, delete

使用方法:

>>> class TestModel(BaseModel):

... PREFIX = "bf:test"

>>> t = TestModel()

>>> t.add('hello')

1

>>> t.extend(['hi', 'world'])

2

>>> t.contains('hi')

True

>>> t.delete()

'''

import logging

from six import PY3 as IS_PY3

from pyreBloom import pyreBloom, pyreBloomException

from BloomFilter.utils import force_utf8

class BaseModel(object):

'''

bloom filter 基础模块

参数:

SLOT: 可用方法类型

PREFIX: redis前缀

BF_SIZE: 存储最大值

BF_ERROR: 允许的出错率

RETRIES: 连接重试次数

host: redis 服务器IP

port: redis 服务器端口

db: redis 服务器DB

_bf_conn: 内部保存`pyreBloom`实例

'''

SLOT = {'add', 'contains', 'extend', 'keys', 'put', 'delete',

'bits', 'hashes'}

PREFIX = ""

BF_SIZE = 100000

BF_ERROR = 0.01

RETRIES = 2

def __init__(self, redis=None):

'''

初始化redis配置

:param redis: redis 配置

'''

#这里初始化防止类静态变量多个继承类复用,导致数据被污染

self._bf_conn = None

self._conf = {

'host': '127.0.0.1', 'password': '',

'port': 6379, 'db': 0

}

if redis:

for k, v in redis.items():

if k in self._conf:

self._conf[k] = redis[k]

self._conf = force_utf8(self._conf)

@property

def bf_conn(self):

'''

初始化pyreBloom

'''

if not self._bf_conn:

prefix = force_utf8(self.PREFIX)

logging.debug(

'pyreBloom connect: redis://%s:%s/%s, (%s%s%s)',

self._conf['host'], self._conf['port'], self._conf['db'],

prefix, self.BF_SIZE, self.BF_ERROR,

)

self._bf_conn = pyreBloom(

prefix, self.BF_SIZE, self.BF_ERROR, **self._conf)

return self._bf_conn

def __getattr__(self, method):

'''调用pyrebloom方法

没有枚举的方法将从`pyreBloom`中获取

:param method:

:return: pyreBloom.{method}

'''

#只提供内部方法

if method not in self.SLOT:

raise NotImplementedError()

#捕获`pyreBloom`的异常, 打印必要的日志

def catch_error(*a, **kwargs):

'''多次重试服务'''

args = force_utf8(a)

kwargs = force_utf8(kwargs)

for _ in range(self.RETRIES):

try:

func = getattr(self.bf_conn, method)

res = func(*args, **kwargs)

#python3 返回值和python2返回值不相同,

#手工处理返回类型

if method == 'contains' and IS_PY3:

if isinstance(res, list):

return [i.decode('utf8') for i in res]

return res

except pyreBloomException as error:

logging.warn(

'pyreBloom Error:%s%s', method, str(error))

self.reconnect()

if _ == self.RETRIES:

logging.error('pyreBloom Error')

raise error

return catch_error

def __contains__(self, item):

'''跳转__contains__方法

:param item: 查询元素列表/单个元素

:type item: list/basestring

:return: [bool...]/bool

'''

return self.contains(item)

def reconnect(self):

'''

重新连接bloom

`pyreBloom` 连接使用c driver,没有提供timeout参数,使用了内置的timeout

同时为了保证服务的可靠性,增加了多次重试机制。

struct timeval timeout = { 1, 5000 };

ctxt->ctxt = redisConnectWithTimeout(host, port, timeout);

del self._bf_conn 会调用`pyreBloom`内置的C的del方法,会关闭redis连接

'''

if self._bf_conn:

logging.debug('pyreBloom reconnect')

del self._bf_conn

self._bf_conn = None

_ = self.bf_conn

进阶:计数过滤器(Counting Filter)

提供了一种在BloomFilter上实现删除操作的方法,而无需重新重新创建过滤器。在计数滤波器中,阵列位置(桶)从单个位扩展为n位计数器。实际上,常规布隆过滤器可以被视为计数过滤器,其桶大小为一位。

插入操作被扩展为递增桶的值,并且查找操作检查每个所需的桶是否为非零。然后,删除操作包括递减每个桶的值。

存储桶的算术溢出是一个问题,并且存储桶应该足够大以使这种情况很少见。如果确实发生,则增量和减量操作必须将存储区设置为最大可能值,以便保留BloomFilter的属性。

计数器的大小通常为3或4位。因此,计算布隆过滤器的空间比静态布隆过滤器多3到4倍。相比之下, Pagh,Pagh和Rao(2005)以及Fan等人的数据结构。(2014)也允许删除但使用比静态BloomFilter更少的空间。

计数过滤器的另一个问题是可扩展性有限。由于无法扩展计数布隆过滤器表,因此必须事先知道要同时存储在过滤器中的最大键数。一旦超过表的设计容量,随着插入更多密钥,误报率将迅速增长。

Bonomi等人。(2006)引入了一种基于d-left散列的数据结构,它在功能上是等效的,但使用的空间大约是计算BloomFilter的一半。此数据结构中不会出现可伸缩性问题。一旦超出设计容量,就可以将密钥重新插入到双倍大小的新哈希表中。

Putze,Sanders和Singler(2007)的节省空间的变体也可用于通过支持插入和删除来实现计数过滤器。

Rottenstreich,Kanizo和Keslassy(2012)引入了一种基于变量增量的新通用方法,该方法显着提高了计算布隆过滤器及其变体的误报概率,同时仍支持删除。

与计数布隆过滤器不同,在每个元素插入时,散列计数器以散列变量增量而不是单位增量递增。要查询元素,需要考虑计数器的确切值,而不仅仅是它们的正面性。如果由计数器值表示的总和不能由查询元素的相应变量增量组成,则可以将否定答案返回给查询。

转载:

https://mp.weixin.qq.com/mp/profile_ext?action=home&__biz=MzI0MzQyMTYzOQ==&scene=161#wechat_redirect

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容