TF2 基础 :from_tensor_slices,shuffle,batch

tf

主要总结整理TF2的使用过程总的基础的的知识点

图片数据的切片,混合,打包

测试数据集为:

import tensorflow as tf
import numpy as np
 

np.random.seed(10)#固定每次的随机数
features, labels = (np.random.sample((4, 2, 2)),  # 模拟6组数据,每组数据3个特征
                    np.random.sample((4, 1)))  # 模拟6组数据,每组数据对应一个标签,注意两者的维数必须匹配

print((features))  #  打印feature数据
print((labels))  #  打印标签数据

得到测试用的数据集为:

feture:
[[[0.77132064 0.02075195]
  [0.63364823 0.74880388]]

 [[0.49850701 0.22479665]
  [0.19806286 0.76053071]]

 [[0.16911084 0.08833981]
  [0.68535982 0.95339335]]

 [[0.00394827 0.51219226]
  [0.81262096 0.61252607]]]

lables:
[[0.72175532]
 [0.29187607]
 [0.91777412]
 [0.71457578]]

我们用features表示4张大小为[2,2]的图片数据,labels表示4张图片的标签数据,例如属于哪一类图片

from_tensor_slices

执行以下操作对数据集进行切片操作

data = tf.data.Dataset.from_tensor_slices((features, labels))

输出的结果是包含每一张图片的数据信息和特征信息的节点,4张图片对应的是4个Tensor节点

----------from_tensor_slices--------------

(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=array([[0.77132064, 0.02075195],
       [0.63364823, 0.74880388]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.72175532])>)
       
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.49850701, 0.22479665],
       [0.19806286, 0.76053071]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.29187607])>)
       
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.16911084, 0.08833981],
       [0.68535982, 0.95339335]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.91777412])>)
       
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.00394827, 0.51219226],
       [0.81262096, 0.61252607]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.71457578])>)

shuffle

对from_tensor_slices处理的数据,进行混合,混合就是打乱原数组之间的顺序,数组的数据大小和内容并没有改变;
混合的数据越大,混合程度越高

shuffle_data =data.shuffle(4)#4表示每次混合的buffer size,因为我们只有四个数据,直接混合所有数据

混合后的结果为:
可以跟from_tensor_slices数据进行比较下,原来的数据顺序为[0,1,2,3],混合后为[3,2,1,0]

----------shuffle--------------
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.00394827, 0.51219226],
       [0.81262096, 0.61252607]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.71457578])>)
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.169121084, 0.08833981],
       [0.68535982, 0.95339335]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.91777412])>)
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.49850701, 0.22479665],
       [0.19806286, 0.76053071]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.29187607])>)
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.77132064, 0.02075195],
       [0.63364823, 0.74880388]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.72175532])>)

batch##

batch_data =data.batch(1)

对shuffle处理后的数据进行打包,如果为1,则数据内容和格式跟shuffle的数据相同,相当于没有处理

----------batch(1)--------------
(<tf.Tensor: shape=(1, 2, 2), dtype=float64, numpy=
array([[[0.77132064, 0.02075195],
        [0.63364823, 0.74880388]]])>, <tf.Tensor: shape=(1, 1), dtype=float64, numpy=array([[0.72175532]])>)

(<tf.Tensor: shape=(1, 2, 2), dtype=float64, numpy=
array([[[0.00394827, 0.51219226],
        [0.81262096, 0.61252607]]])>, <tf.Tensor: shape=(1, 1), dtype=float64, numpy=array([[0.71457578]])>)

(<tf.Tensor: shape=(1, 2, 2), dtype=float64, numpy=
array([[[0.16911084, 0.08833981],
        [0.68535982, 0.95339335]]])>, <tf.Tensor: shape=(1, 1), dtype=float64, numpy=array([[0.91777412]])>)

(<tf.Tensor: shape=(1, 2, 2), dtype=float64, numpy=
array([[[0.49850701, 0.22479665],
        [0.19806286, 0.76053071]]])>, <tf.Tensor: shape=(1, 1), dtype=float64, numpy=array([[0.29187607]])>)

如果batch(2),则每个节点信息中包含两张图片数据,以此类推

(<tf.Tensor: shape=(2, 2, 2), dtype=float64, numpy=
array([[[0.00394827, 0.51219226],
        [0.81262096, 0.61252607]],

       [[0.77132064, 0.02075195],
        [0.63364823, 0.74880388]]])>, <tf.Tensor: shape=(2, 1), dtype=float64, numpy=
array([[0.71457578],
       [0.72175532]])>)


(<tf.Tensor: shape=(2, 2, 2), dtype=float64, numpy=
array([[[0.49850701, 0.22479665],
        [0.19806286, 0.76053071]],

       [[0.16911084, 0.08833981],
        [0.68535982, 0.95339335]]])>, <tf.Tensor: shape=(2, 1), dtype=float64, numpy=
array([[0.29187607],
       [0.91777412]])>)

总结一下:

  1. from_tensor_slices对原图片数据进行切片,有多上张图片就切成多少个数据
  2. shuffle,对切好后的数据进行混合,交换下顺序
  3. batch对数据进行打包,便于批量化处理;batch后的节点数为(数据集大小/batch大小),两个数字可能不是整除,会导致一个batch大小可能小于等于batch size

完整代码:shuffle_and_batch.py

import tensorflow as tf
import numpy as np
 
from    tensorflow.keras import datasets

np.random.seed(10)#固定每次的随机数
features, labels = (np.random.sample((4, 2, 2)),  # 模拟6组数据,每组数据3个特征
                    np.random.sample((4, 1)))  # 模拟6组数据,每组数据对应一个标签,注意两者的维数必须匹配

print((features))  #  打印feature数据
print((labels))  #  打印标签数据

print('----------from_tensor_slices--------------') 

for element in features: 
  print(element) 

#切片转换,将数据转化成tesor节点数据
data = tf.data.Dataset.from_tensor_slices((features, labels))

for element in data: 
  print(element) 

print('----------shuffle--------------') 

#shuffle_data = tf.data.Dataset.from_tensor_slices((features,labels)).shuffle(1000).batch(128)
shuffle_data =data.shuffle(4)

for element in shuffle_data: 
  print(element) 
  
  
print('----------batch--------------') 
batch_data =shuffle_data.batch(2)
  
for element in batch_data: 
  print(element) 
  
  
batch_data.repeat(2)


output:

runfile('G:/GitHub/tensorflow/Spyder/TF2/shuffle_and_batch.py', wdir='G:/GitHub/tensorflow/Spyder/TF2')
[[[0.77132064 0.02075195]
  [0.63364823 0.74880388]]

 [[0.49850701 0.22479665]
  [0.19806286 0.76053071]]

 [[0.16911084 0.08833981]
  [0.68535982 0.95339335]]

 [[0.00394827 0.51219226]
  [0.81262096 0.61252607]]]
[[0.72175532]
 [0.29187607]
 [0.91777412]
 [0.71457578]]
----------from_tensor_slices--------------
[[0.77132064 0.02075195]
 [0.63364823 0.74880388]]
[[0.49850701 0.22479665]
 [0.19806286 0.76053071]]
[[0.16911084 0.08833981]
 [0.68535982 0.95339335]]
[[0.00394827 0.51219226]
 [0.81262096 0.61252607]]
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.77132064, 0.02075195],
       [0.63364823, 0.74880388]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.72175532])>)
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.49850701, 0.22479665],
       [0.19806286, 0.76053071]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.29187607])>)
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.16911084, 0.08833981],
       [0.68535982, 0.95339335]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.91777412])>)
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.00394827, 0.51219226],
       [0.81262096, 0.61252607]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.71457578])>)
----------shuffle--------------
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.49850701, 0.22479665],
       [0.19806286, 0.76053071]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.29187607])>)
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.16911084, 0.08833981],
       [0.68535982, 0.95339335]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.91777412])>)
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.77132064, 0.02075195],
       [0.63364823, 0.74880388]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.72175532])>)
(<tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.00394827, 0.51219226],
       [0.81262096, 0.61252607]])>, <tf.Tensor: shape=(1,), dtype=float64, numpy=array([0.71457578])>)
----------batch--------------
(<tf.Tensor: shape=(2, 2, 2), dtype=float64, numpy=
array([[[0.77132064, 0.02075195],
        [0.63364823, 0.74880388]],

       [[0.16911084, 0.08833981],
        [0.68535982, 0.95339335]]])>, <tf.Tensor: shape=(2, 1), dtype=float64, numpy=
array([[0.72175532],
       [0.91777412]])>)
(<tf.Tensor: shape=(2, 2, 2), dtype=float64, numpy=
array([[[0.00394827, 0.51219226],
        [0.81262096, 0.61252607]],

       [[0.49850701, 0.22479665],
        [0.19806286, 0.76053071]]])>, <tf.Tensor: shape=(2, 1), dtype=float64, numpy=
array([[0.71457578],
       [0.29187607]])>)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容