Redis MGET性能衰减分析

MGET是redis中较为常用的命令,用来批量获取给定key对应的value。因为redis使用基于RESP (REdis Serialization Protocol)协议的rpc接口,而redis本身的数据结构非常高效,因此在日常使用中,IO和协议解析是个不容忽略的资源消耗。通过mget将多个get请求汇聚成一条命令,可以大大降低网络、rpc协议解析的开销,从而大幅提升缓存效率。mget的定义如下(来自REDIS命令参考):

MGET key [key ...]
返回所有(一个或多个)给定 key 的值。
如果给定的 key 里面,有某个 key 不存在,那么这个 key 返回特殊值 nil 。因此,该命令永不失败。

返回值:
    一个包含所有给定 key 的值的列表。q

例:
    redis> SET redis redis.com
    OK
    redis> SET mongodb mongodb.org
    OK
    redis> MGET redis mongodb
    1) "redis.com"
    2) "mongodb.org"

但是,在某些需要一次批量查询大量key的场景下,我们会发现mget并没有想象中的那么完美。

以电商库存系统(或价格系统)为例,作为原子级的服务,我们经常要面对商品列表页、活动页、购物车、交易等系统的批量查询,一次请求中动辄包含几十甚至上百个sku,此时mget是否还能像我们想象中那般保持极高的吞吐?

我们先来设计一个实验,探一探mget性能的底。

1 实验设计

在本地进行了压测模拟,redis key设计:

  1. key为string类型,固定为八位数字字符串以模拟SKU ID,不足8位者高位填0
  2. value为5位整型数字,模拟商品库存
  3. 实验中将SKU ID设置为1~500000的数字

单元测试代码设计原则:

  1. 可以方便地调整测试参数
  2. 尽量减少GC对结果的影响,设置合适的堆空间和垃圾回收器

压测代码做了局部优化以尽量保证结果的准确性,包括:

  • 针对每一轮压测,提前准备好随机的key列表,避免随机生成key列表时大量的内存操作对测试结果造成影响
  • 每一轮压测统计多次mget的平均执行时间
  • 每一轮压测完成后,强制触发fullgc,尽量避免在压测进行中发生gc
@Test
public void testRedisMultiGetPerformance() {
    final int[] keyLens = new int[]{1, 2, 3, 4, 5, ..., 10000 };
    for(int keyLen : keyLens){
        noTransactionNoPipelineMultiGetWithSpecifiedKeyList(getPreparedKeys(keyLen));
    }
}
// 在mget前准备好随机的key列表
private List<String[]> getPreparedKeys(int keyLen, int loopTimes) {
    int loopTimes = 1000;
    if(keyLen<10) loopTimes *= 100;
    else if (keyLen<100) loopTimes *= 50;
    else if (keyLen<500) loopTimes *= 10;
    else if (keyLen<1000) loopTimes *= 5;
    return generateKeys(keyLen, i);
}
// 生成 times 组不同的 String[] keys ,每组keys长度为 keyLen
private List<String[]> generateKeys(int keyLen, int times) {
    List<String[]> keysList = new ArrayList<String[]>(times);
    for(int i=0; i<times; i++) {
        String[] keys = new String[keyLen];
        for(int j=0; j<keyLen; j++) {
            keys[j] = String.valueOf(RandomUtils.nextInt(keyCounter.get()));
        }
        keysList.add(keys);
    }
    return keysList;
}
// 根据预先生成的key列表通过mget取value并计算和打印平均时间
public void noTransactionNoPipelineMultiGetWithSpecifiedKeyList(List<String[]> keysList) {
    Jedis jedis = pool.getResource();
    long meanTime = 0;
    try {
        long start = System.currentTimeMillis();
        for (String[] keys: keysList) {
            jedis.mget(keys);
        }
        meanTime += System.currentTimeMillis() - start;
    } catch (Exception e) {
        logger.error("", e);
    }finally {
        jedis.close();
        logger.info("{} | {} | {} | {} | {} | |"
                , String.format("%5d", keysList.get(0).length)
                , String.format("%5.3f", meanTime / Float.valueOf(keysList.size()))
                , String.format("%9.3f", Float.valueOf(keysList.size()) * 1000 / meanTime)
                , String.format("%5s", 5*keysList.get(0).length)
                , String.format("%7s", keysList.size()));
        // force gc 降低在压测进行中出现gc的概率
        System.gc();
    }
}

2 JVM调优

考虑到redis平均响应时间在0.1ms以内,而一次minor gc一般需要耗时50ms以上,而full gc更可能耗费数秒,因此需要格外注意压测时的jvm内存设置和GC配置。

经过调试,设置Java启动参数:-Xms3g -Xmx3g -XX:+UseG1GC -XX:MaxNewSize=1g -server -XX:MaxTenuringThreshold=1时,在本实验中可以获得理想的结果。

通过下面jstat日志可以看出,实验过程中没有出现minor gc,每一轮结束后强制进行一次full gc,full gc触发次数与压测轮数一致。因此测试中统计的时间仅包含了redis响应时间和相关代码执行时间 (在性能越高的场景下,代码执行时间相对影响越大)。

jinlu$ jstat -gcutil $(jps | grep AppMain | cut -d " " -f 1) 4000
S0     S1     E      O      M     CCS    YGC     YGCT    FGC    FGCT     GCT
0.00 100.00  24.82  20.75  97.13  93.88      9    0.719     0    0.000    0.719
0.00 100.00   2.42  31.50  97.16  93.88     12    0.746     0    0.000    0.746
0.00   0.00   1.39  28.67  98.06  94.73     12    0.746     1    1.832    2.579
0.00   0.00   7.90   0.08  98.12  94.78     12    0.746     2    2.104    2.850
...
0.00   0.00   9.49   0.07  95.66  95.10     13    1.035    33    5.245    6.280
0.00 100.00  16.90  18.24  95.66  95.10     14    1.375    34    5.307    6.683
0.00 100.00  42.14  23.35  95.66  95.10     15    1.425    34    5.307    6.733

另外,为了保证结果的可靠性,整个测试期间,通过top对系统性能进行监控,结果如下:

  1. redis CPU占用率很高但未饱和,即没有出现redis性能饱和导致的响应变慢
  2. java进程的CPU占用率维持在30%上下,表明java代码没有遇到瓶颈,时间主要用于等待redis返回mget结果。

可见压测过程中,redis的CPU占比保持在50%~80%但没有饱和,java进程的cpu保持30%~50%。因此不存在因为CPU导致的响应变慢,结果完全反应在中重度压力下redis对mget的处理能力。压测过程中抓取的top图如下:

top系统性能

3 实验结果

通过针对不同的mgetkey长度进行多轮压测,得到不同的key长度下redis响应能力表如下:

keyLen 耗时ms qps % lg(keyLen) keyLen 耗时ms qps % lg(keyLen)
1 0.040 25056.377 100 0.000 18 0.049 20242.914 80.7 1.255
2 0.040 25284.449 100 0.301 20 0.055 18214.936 72.7 1.301
3 0.040 24752.475 99.8 0.477 25 0.053 18811.137 75.0 1.398
4 0.042 23618.328 94.2 0.602 32 0.057 17525.412 70.0 1.505
5 0.044 22696.322 90.6 0.699 40 0.063 15888.147 63.4 1.602
6 0.042 23849.273 95.2 0.778 50 0.067 14889.815 59.4 1.699
7 0.043 23255.814 92.8 0.845 60 0.075 13276.687 53.0 1.778
8 0.044 22888.533 91.3 0.903 80 0.091 10979.358 43.8 1.903
9 0.045 22040.996 88.0 0.954 100 0.096 10405.827 41.5 2.000
10 0.045 22065.313 88.0 1.000 200 0.161 6211.180 24.8 2.301
11 0.046 21901.008 87.4 1.041 500 0.348 2871.913 11.5 2.699
12 0.046 21691.975 86.6 1.079 800 0.552 1812.251 7.2 2.903
13 0.047 21105.951 84.2 1.114 1000 0.639 1564.945 6.2 3.000
14 0.047 21258.504 84.4 1.146 2000 1.201 832.639 3.3 3.301
15 0.049 20300.447 81.0 1.176 5000 3.140 318.471 1.2 3.699
16 0.050 20032.051 79.9 1.204 8000 5.297 188.786 0.7 3.903
17 0.049 20234.723 80.8 1.230 10000 6.141 162.840 0.6 4.000

下面分段进行分析。

3.1 单次mget的key数目在50以内时

  • 一次操作10个key的性能达到一次操作1个key的88%
  • 一次操作20个key的性能达到一次操作1个key的72%
  • 一次操作50个key的性能达到一次操作1个key的59%
keyLen<50曲线拟合

可以看出,此时redis整体响应非常好,包含50个以内的key时,mget既可以保持高qps,又可以大幅提升吞吐量。

3.2 单次mget的key数目在100以内时

  • 一次操作60个key的性能达到一次操作1个key的53%
  • 一次操作80个key的性能达到一次操作1个key的43%
  • 一次操作100个key的性能大道一次操作1个key的41%
keyLen<100曲线拟合

单次操作key数量在100以内时,性能大概能达到redis最大性能的40%以上,考虑到key的吞吐量,这样做是有足够的收益的,但是需要清楚当前场景下单个redis实例的最大吞吐量,必要时需要进行分片以提高系统整体性能。

3.3 单次mget的key数目在1000以内

  • 一次操作200个key的性能只能达到一次操作1个key的25%,大约是一次处理100个key的60%
  • 一次操作500个key的性能只能达到一次操作1个key的11%,大约是一次处理100个key的28%
  • 一次操作800个key的性能只能达到一次操作1个key的7%,大约是一次处理100个key的17%
keyLen<1000曲线拟合

可见,虽然相比较较少的key,单次请求处理更多的key还是有性能上的微弱优势,但是此时性能衰减已经比较严重,此时的redis实例不在是那个动辄每秒几万qps的超人了,可能从性能上来说可以接受,但是我们要清楚此时redis的响应能力,并结合业务场景并考虑是否需要通过其他手段来为redis减负,比如分片、读写分离、多级缓存等。

3.4 单次mget的key数目在1000以上

  • 性能急剧恶化,即使在高性能服务器上,这样的操作在单redis实例上也只能维持在千上下,此时单次请求的响应时间退化到与key数目成正比。除非你确定需要这么做,否则就要尽量避免如此多的key的批量获取,而应该从业务上、架构上考虑这么做的必要性。
keyLen>1000曲线拟合

3.5 请求时间与key数目对数的关系

对mget的key数目取对数,可以得到如下曲线。

log10(keyLen) and keyLen<10000

【注意】 x轴为key的数目对10取对数,即log10(keyLen)

  • 当key数目在10以内时,mget性能下降趋势非常小,性能基本上能达到redis实例的极限
  • 当key数目在10~100之间时,mget性能下降明显,需要考虑redis性能衰减对系统吞吐的影响
  • 当key数目在100以上时,mget性能下降幅度趋缓,此时redis性能已经较差,不建议使用在OLTP系统中,或者需要考虑其他手段来提升性能。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容