监督学习(八)——决策树集成:梯度提升回归树

梯度提升回归树是另一种决策树集成方法,通过合并多个决策树来构建一个更为强大的模型。虽然名字中含有“回归”,但这个模型既可以用于回归也可以用于分类
与随机森林方法不同,梯度提升采用连续的方式构造树,每棵树都试图纠正前一棵树的错误。默认情况下,梯度提升回归树中没有随机化,而是用到了强预剪枝。梯度提升树通常使用深度很小(1到 5 之间)的树,这样模型占用的内存更少,预测速度也更快。
梯度提升背后的主要思想是合并许多简单的模型,比如深度较小的树。每棵树只能对部分数据做出好的预测,因此,添加的树越来越多,可以不断迭代提高性能。
梯度提升树通常对参数设置更为敏感,正确的设置参数,可以将精度提高很多。除了预剪枝与集成中树的数量之外,梯度提升的另一个重要参数是 learning_rate(学习率),它用于控制每棵树纠正前一棵树的错误的强度。较高的学习率意味着每棵树都可以做出较强的修正,这样模型更为复杂。通过增大 n_estimators 来向集成中添加更多树,也可以增加模型复杂度,因为模型有更多机会纠正训练集上的错误。

例子

利用GradientBoostingClassifier,数据用sklearn.datasets中的load_breast_cancer。
第一次,用默认值: 100 棵树, 最大深度是 3,学习率为 0.1。

cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
         cancer.data, cancer.target, random_state=0)
gbrt = GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))
结果:
Accuracy on training set: 1.000
Accuracy on test set: 0.958

训练集精度达到 100%,很可能存在过拟合。为了降低过拟合,我们可以限制最 大深度来加强预剪枝,也可以降低学习率:

第二次,将最大深度改为1。

gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
结果:
Accuracy on training set: 0.991
Accuracy on test set: 0.972

第三次,降低学习率。

gbrt = GradientBoostingClassifier(random_state=0, learning_rate=0.01)
结果:
Accuracy on training set: 0.988
Accuracy on test set: 0.965

由于梯度提升和随机森林两种方法在类似的数据上表现得都很好,因此一种常用的方法就是先尝试随机森林,它的鲁棒性很好。如果随机森林效果很好,但预测时间太长,或者机 器学习模型精度小数点后第二位的提高也很重要,那么切换成梯度提升通常会有用。
如果你想要将梯度提升应用在大规模问题上,可以研究一下 xgboost 包及其 Python 接口,这个库在许多数据集上的速度都比 scikit-learn 对梯度提升的实现要快 。

优点、缺点和参数

梯度提升决策树是监督学习中最强大也最常用的模型之一。
其主要缺点是需要仔细调参,而且训练时间可能会比较长。与其他基于树的模型类似,这一算法不需要对数据进行缩放就可以表现得很好,而且也适用于二元特征与连续特征同时存在的数据集。与其他基于树的模型相同,它也通常不适用于高维稀疏数据。
梯度提升树模型的主要参数包括树的数量 n_estimators 和学习率 learning_rate,后者用于控制每棵树对前一棵树的错误的纠正强度。这两个参数高度相关,因为 learning_ rate 越低,就需要更多的树来构建具有相似复杂度的模型。
随机森林的 n_estimators 值总是越大越好,但梯度提升不同,增大 n_estimators 会导致模型更加复杂,进而可能导致过拟合。通常的做法是根据时间和内存的预算选择合适的 n_estimators,然后对不同的 learning_rate 进行遍历。
另一个重要参数是 max_depth(或 max_leaf_nodes),用于降低每棵树的复杂度。梯度提升模型的 max_depth 通常都设置得很小,一般不超过 5。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容

  • 假设你去随机问很多人一个很复杂的问题,然后把它们的答案合并起来。通常情况下你会发现这个合并的答案比一个专家的答案要...
    城市中迷途小书童阅读 2,501评论 0 1
  • 集成学习 集成学习 (ensemble learning) 是通过构建并结合多个学习器来完成学习任务。其一般结构为...
    dreampai阅读 1,012评论 0 0
  • 机器学习是做NLP和计算机视觉这类应用算法的基础,虽然现在深度学习模型大行其道,但是懂一些传统算法的原理和它们之间...
    在河之简阅读 20,500评论 4 65
  • 博客园:梯度提升树(GBDT)原理小结博客园:一步一步理解GB、GBDT、xgboost知乎:机器学习算法中GBD...
    闫阿佳阅读 5,090评论 0 5
  • 今年5月25日(2018年),就是GDPR生效的时间。GDPR可能是人类历史上最严苛、影响面最广的个人隐私数据保护...
    bigANDY阅读 772评论 0 2