激活函数和损失函数

3.1 激活函数

关于激活函数,首先要搞清楚的问题是,激活函数是什么,有什么用?不用激活函数可不可以?答案是不可以。激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。

那么激活函数应该具有什么样的性质呢?

可微性: 当优化方法是基于梯度的时候,这个性质是必须的。

单调性: 当激活函数是单调的时候,单层网络能够保证是凸函数。

输出值的范围: 当激活函数输出值是 有限 的时候,基于梯度的优化方法会更加 稳定,因为特征的表示受有限权值的影响更显著;当激活函数的输出是 无限 的时候,模型的训练会更加高效,不过在这种情况小,一般需要更小的learning rate

从目前来看,常见的激活函数多是分段线性和具有指数形状的非线性函数

3.1.1 sigmoid

f(x)=11+e−x

sigmoid 是使用范围最广的一类激活函数,具有指数函数形状,它在物理意义上最为接近生物神经元。此外,(0, 1) 的输出还可以被表示作概率,或用于输入的归一化,代表性的如Sigmoid交叉熵损失函数。

然而,sigmoid也有其自身的缺陷,最明显的就是饱和性。从上图可以看到,其两侧导数逐渐趋近于0

limx−>∞f′(x)=0

具有这种性质的称为软饱和激活函数。具体的,饱和又可分为左饱和与右饱和。与软饱和对应的是硬饱和, 即

f′(x)=0,当|x|>c,其中c为常数。

sigmoid 的软饱和性,使得深度神经网络在二三十年里一直难以有效的训练,是阻碍神经网络发展的重要原因。具体来说,由于在后向传递过程中,sigmoid向下传导的梯度包含了一个f′(x)因子(sigmoid关于输入的导数),因此一旦输入落入饱和区,f′(x)就会变得接近于0,导致了向底层传递的梯度也变得非常小。此时,网络参数很难得到有效训练。这种现象被称为梯度消失。一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象

此外,sigmoid函数的输出均大于0,使得输出不是0均值,这称为偏移现象,这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。

3.1.2 tanh

f(x)=1−e−2x1+e−2x

tanh也是一种非常常见的激活函数。与sigmoid相比,它的输出均值是0,使得其收敛速度要比sigmoid快,减少迭代次数。然而,从途中可以看出,tanh一样具有软饱和性,从而造成梯度消失。

3.1.3 ReLU,P-ReLU, Leaky-ReLU

f(x)={x,ifx≥00,ifx<0f(x)=max(0,x)

ReLU的全称是Rectified Linear Units,是一种后来才出现的激活函数。 可以看到,当x<0时,ReLU硬饱和,而当x>0时,则不存在饱和问题。所以,ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。这让我们能够直接以监督的方式训练深度神经网络,而无需依赖无监督的逐层预训练。

然而,随着训练的推进,部分输入会落入硬饱和区,导致对应权重无法更新。这种现象被称为“神经元死亡”。与sigmoid类似,ReLU的输出均值也大于0,偏移现象和 神经元死亡会共同影响网络的收敛性。

针对在x<0的硬饱和问题,我们对ReLU做出相应的改进,使得

f(x)={x,ifx≥0αx,ifx<0

这就是Leaky-ReLU, 而P-ReLU认为,α也可以作为一个参数来学习,原文献建议初始化a为0.25,不采用正则。

3.1.4 ELU

f(x)={x,ifx≥0α(ex−1),ifx<0

融合了sigmoid和ReLU,左侧具有软饱和性,右侧无饱和性。右侧线性部分使得ELU能够缓解梯度消失,而左侧软饱能够让ELU对输入变化或噪声更鲁棒。ELU的输出均值接近于零,所以收敛速度更快。在 ImageNet上,不加 Batch Normalization 30 层以上的 ReLU 网络会无法收敛,PReLU网络在MSRA的Fan-in (caffe )初始化下会发散,而 ELU 网络在Fan-in/Fan-out下都能收敛

3.1.5 Maxout

f(x)=max(wT1x+b1,wT2x+b2,⋯,wTn+bn)

在我看来,这个激活函数有点大一统的感觉,因为maxout网络能够近似任意连续函数,且当w2,b2,…,wn,bn为0时,退化为ReLU。Maxout能够缓解梯度消失,同时又规避了ReLU神经元死亡的缺点,但增加了参数和计算量。

3.2 损失函数

在之前的内容中,我们用的损失函数都是平方差函数,即

C=12(a−y)2

其中y是我们期望的输出,a为神经元的实际输出(a=σ(Wx+b)。也就是说,当神经元的实际输出与我们的期望输出差距越大,代价就越高。想法非常的好,然而在实际应用中,我们知道参数的修正是与∂C∂W和∂C∂b成正比的,而根据

∂C∂W=(a−y)σ′(a)xT∂C∂b=(a−y)σ′(a)

我们发现其中都有σ′(a)这一项。因为sigmoid函数的性质,导致σ′(z)在z取大部分值时会造成饱和现象,从而使得参数的更新速度非常慢,甚至会造成离期望值越远,更新越慢的现象。那么怎么克服这个问题呢?我们想到了交叉熵函数。我们知道,熵的计算公式是

H(y)=−∑iyilog(yi)

而在实际操作中,我们并不知道y的分布,只能对y的分布做一个估计,也就是算得的a值, 这样我们就能够得到用a来表示y的交叉熵

H(y,a)=−∑iyilog(ai)

如果有多个样本,则整个样本的平均交叉熵为

H(y,a)=−1n∑n∑iyi,nlog(ai,n)

其中n表示样本编号,i表示类别编。 如果用于logistic分类,则上式可以简化成

H(y,a)=−1n∑nylog(a)+(1−y)log(1−a)

与平方损失函数相比,交叉熵函数有个非常好的特质,

H′=1n∑(an−yn)=1n∑(σ(zn)−yn)

可以看到其中没有了σ′这一项,这样一来也就不会受到饱和性的影响了。当误差大的时候,权重更新就快,当误差小的时候,权重的更新就慢。这是一个很好的性质。

原文链接

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351

推荐阅读更多精彩内容