R语言:表格的线图转化

上了猴子的大数据课第三讲后,因为有预习的缘故,程序跑的比较顺利。按照课后布置,用相似的思路,进行实践分析。

最先选取的是北京各区普通住宅成交十年(2016年及2006年)涨幅对比。这张图比较plain,主要拿来练习:

1.数据表格的基本整理及计算

2. 数据的初步分析

3.线图的基本绘图

图片来自网络


图片输入为excel,然后倒入到r程序中。

install.packages("openxlsx")

library(openxlsx)

readFilePath<-"E:/citystock.xlsx"

mydata<-read.xlsx(readFilePath,"Sheet2")


按照短平快的思路,首先把线图做出来

plot(mydata$y2006,col="red",ylim=c(0,95000),type="b")

lines(mydata$y2016,col="blue",type="b")

lines单独不能绘图,所以要plot先行。



图片版权为作者所有

2. 按照原始的表格,各区排名高低错落,看不出来趋势,所以插入order语句按照2006年的均价进行排序。然后检查一下。

mydata<-mydata[order(mydata$y2006),]

mydata

3.修改plot及lines语句,进行美化,线条及图例进行区分,因为区名是比较长的中文,所以字体要进行竖排及缩小,las=1,cex为0.5。

加入2006年及2016年均价的中间值(黄色线),作为参考。

mydata$mid<-(mydata$y2006+mydata$y2016)%/%2

plot(mydata$y2006,col="red",ylim=c(0,95000),type="b",xaxt="n",ylab="price")

lines(mydata$y2016,col="blue",type="b",pch=17,las=1)

lines(mydata$mid,col="gold",type="b",pch=16)

axis(1,las=2,at=c(1:16),labels=mydata$city,cex.lab=0.5)



4. 加入2006年,2016年各自的平均线,颜色为灰色及粉红。这样哪个区是超出的,一目了然。

abline(h=(mean(mydata$y2006)+mean(mydata$y2016))%/%2,col="grey")

abline(h=mean(mydata$y2016),col="pink")

abline(h=mean(mydata$y2006),col="pink")


5. 加入图例legend,,在2016年均线上加入互动标注(点击后才出现),以及缺省栅格

legend("topleft",bty="n",horiz=TRUE,pch=c(17,16,21),c("2016","mean","2006"),col=c("blue","gold","red"),cex=0.8)

text(locator(1),"2016均价",4,cex=.8,color="brown")

grid()


至此,由简单表格转化的图表基本完成。不过从图像来看,好像东城区涨幅最惊人,但是通过表格,其实东城区的涨幅并非最高。因此我们可能需要用条形图再显示。这个就需要我继续努力啦。

小白作业,欢迎提各种意见。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容