引用:https://www.jianshu.com/p/6f5662908dae
链接:https://www.jianshu.com/p/ebfc51ea1fe3
垂直分表
垂直分表在日常开发和设计中比较常见,通俗的说法叫做“大表拆小表”,拆分是基于关系型数据库中的“列”(字段)进行的。通常情况,某个表中的字段比较多,可以新建立一张“扩展表”,将不经常使用或者长度较大的字段拆分出去放到“扩展表”中,如下图所示:
在字段很多的情况下,拆分开确实更便于开发和维护(笔者曾见过某个遗留系统中,一个大表中包含100多列的)。某种意义上也能避免“跨页”的问题(MySQL、MSSQL底层都是通过“数据页”来存储的,“跨页”问题可能会造成额外的性能开销,这里不展开,感兴趣的朋友可以自行查阅相关资料进行研究)。
拆分字段的操作建议在数据库设计阶段就做好。如果是在发展过程中拆分,则需要改写以前的查询语句,会额外带来一定的成本和风险,建议谨慎。
垂直分库
垂直分库在“微服务”盛行的今天已经非常普及了。基本的思路就是按照业务模块来划分出不同的数据库,而不是像早期一样将所有的数据表都放到同一个数据库中。如下图:
系统层面的“服务化”拆分操作,能够解决业务系统层面的耦合和性能瓶颈,有利于系统的扩展维护。而数据库层面的拆分,道理也是相通的。与服务的“治理”和“降级”机制类似,我们也能对不同业务类型的数据进行“分级”管理、维护、监控、扩展等。
众所周知,数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈,是大型分布式系统中优化数据库架构的重要手段。
然后,很多人并没有从根本上搞清楚为什么要拆分,也没有掌握拆分的原则和技巧,只是一味的模仿大厂的做法。导致拆分后遇到很多问题(例如:跨库join,分布式事务等)。
水平分表
水平分表也称为横向分表,比较容易理解,就是将表中不同的数据行按照一定规律分布到不同的数据库表中(这些表保存在同一个数据库中),这样来降低单表数据量,优化查询性能。最常见的方式就是通过主键或者时间等字段进行Hash和取模后拆分。如下图所示:
水平分表,能够降低单表的数据量,一定程度上可以缓解查询性能瓶颈。但本质上这些表还保存在同一个库中,所以库级别还是会有IO瓶颈。所以,一般不建议采用这种做法。
水平分库分表
水平分库分表与上面讲到的水平分表的思想相同,唯一不同的就是将这些拆分出来的表保存在不同的数据中。这也是很多大型互联网公司所选择的做法。如下图:
某种意义上来讲,有些系统中使用的“冷热数据分离”(将一些使用较少的历史数据迁移到其他的数据库中。而在业务功能上,通常默认只提供热点数据的查询),也是类似的实践。在高并发和海量数据的场景下,分库分表能够有效缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源的瓶颈。当然,投入的硬件成本也会更高。同时,这也会带来一些复杂的技术问题和挑战(例如:跨分片的复杂查询,跨分片事务等)
垂直分库带来的的难点
跨库join的问题
在拆分之前,系统中很多列表和详情页所需的数据是可以通过sql join来完成的。而拆分后,数据库可能是分布式在不同实例和不同的主机上,join将变得非常麻烦。而且基于架构规范,性能,安全性等方面考虑,一般是禁止跨库join的。那该怎么办呢?首先要考虑下垂直分库的设计问题,如果可以调整,那就优先调整。如果无法调整的情况,下面笔者将结合以往的实际经验,总结几种常见的解决思路,并分析其适用场景。
跨库Join的几种解决思路
全局表
所谓全局表,就是有可能系统中所有模块都可能会依赖到的一些表。比较类似我们理解的“数据字典”。为了避免跨库join查询,我们可以将这类表在其他每个数据库中均保存一份。同时,这类数据通常也很少发生修改(甚至几乎不会),所以也不用太担心“一致性”问题。
字段冗余
这是一种典型的反范式设计,在互联网行业中比较常见,通常是为了性能来避免join查询。
举个电商业务中很简单的场景:
“订单表”中保存“卖家Id”的同时,将卖家的“Name”字段也冗余,这样查询订单详情的时候就不需要再去查询“卖家用户表”。
字段冗余能带来便利,是一种“空间换时间”的体现。但其适用场景也比较有限,比较适合依赖字段较少的情况。最复杂的还是数据一致性问题,这点很难保证,可以借助数据库中的触发器或者在业务代码层面去保证。当然,也需要结合实际业务场景来看一致性的要求。就像上面例子,如果卖家修改了Name之后,是否需要在订单信息中同步更新呢?
数据同步
定时A库中的tab_a表和B库中tbl_b有关联,可以定时将指定的表做同步。当然,同步本来会对数据库带来一定的影响,需要性能影响和数据时效性中取得一个平衡。这样来避免复杂的跨库查询。笔者曾经在项目中是通过ETL工具来实施的。
系统层组装
在系统层面,通过调用不同模块的组件或者服务,获取到数据并进行字段拼装。说起来很容易,但实践起来可真没有这么简单,尤其是数据库设计上存在问题但又无法轻易调整的时候。
具体情况通常会比较复杂。下面笔者结合以往实际经验,并通过伪代码方式来描述。
简单的列表查询的情况
伪代码很容易理解,先获取“我的提问列表”数据,然后再根据列表中的UserId去循环调用依赖的用户服务获取到用户的RealName,拼装结果并返回。
有经验的读者一眼就能看出上诉伪代码存在效率问题。循环调用服务,可能会有循环RPC,循环查询数据库…不推荐使用。再看看改进后的:
这种实现方式,看起来要优雅一点,其实就是把循环调用改成一次调用。当然,用户服务的数据库查询中很可能是In查询,效率方面比上一种方式更高。(坊间流传In查询会全表扫描,存在性能问题,传闻不可全信。其实查询优化器都是基本成本估算的,经过测试,在In语句中条件字段有索引的时候,条件较少的情况是会走索引的。这里不细展开说明,感兴趣的朋友请自行测试)。
小结
简单字段组装的情况下,我们只需要先获取“主表”数据,然后再根据关联关系,调用其他模块的组件或服务来获取依赖的其他字段(如例中依赖的用户信息),最后将数据进行组装。
通常,我们都会通过缓存来避免频繁RPC通信和数据库查询的开销。
列表查询带条件过滤的情况
在上述例子中,都是简单的字段组装,而不存在条件过滤。看拆分前的SQL:
这种连接查询并且还带条件过滤的情况,想在代码层面组装数据其实是非常复杂的(尤其是左表和右表都带条件过滤的情况会更复杂),不能像之前例子中那样简单的进行组装了。试想一下,如果像上面那样简单的进行组装,造成的结果就是返回的数据不完整,不准确。
有如下几种解决思路:
查出所有的问答数据,然后调用用户服务进行拼装数据,再根据过滤字段state字段进行过滤,最后进行排序和分页并返回。这种方式能够保证数据的准确性和完整性,但是性能影响非常大,不建议使用。
查询出state字段符合/不符合的UserId,在查询问答数据的时候使用in/not in进行过滤,排序,分页等。过滤出有效的问答数据后,再调用用户服务获取数据进行组装。这种方式明显更优雅点。笔者之前在某个项目的特殊场景中就是采用过这种方式实现。
跨库事务(分布式事务)的问题
按业务拆分数据库之后,不可避免的就是“分布式事务”的问题。以往在代码中通过spring注解简单配置就能实现事务的,现在则需要花很大的成本去保证一致性。
CAP理论
分布式事务相关的两阶段提交和三阶段提交
两阶段提交协议在主流开发语言平台,数据库产品中都有广泛应用和实现的,下面来介绍一下XOpen组织提供的DTP模型图:
XA协议指的是TM(事务管理器)和RM(资源管理器)之间的接口。目前主流的关系型数据库产品都是实现了XA接口的。JTA(Java Transaction API)是符合X/Open DTP模型的,事务管理器和资源管理器之间也使用了XA协议。 本质上也是借助两阶段提交协议来实现分布式事务的,下面分别来看看XA事务成功和失败的模型图:
在JavaEE平台下,WebLogic、Webshare等主流商用的应用服务器提供了JTA的实现和支持。而在Tomcat下是没有实现的(其实笔者并不认为Tomcat能算是JavaEE应用服务器),这就需要借助第三方的框架Jotm、Automikos等来实现,两者均支持spring事务整合。
而在Windows .NET平台中,则可以借助ado.net中的TransactionScop API来编程实现,还必须配置和借助Windows操作系统中的MSDTC服务。如果你的数据库使用的mysql,并且mysql是部署在Linux平台上的,那么是无法支持分布式事务的。
提供回滚接口
在服务化架构中,功能X,需要去协调后端的A、B甚至更多的原子服务。那么问题来了,假如A和B其中一个调用失败了,那可怎么办呢?
在笔者的工作中经常遇到这类问题,往往提供了一个BFF层来协调调用A、B服务。如果有些是需要同步返回结果的,我会尽量按照“串行”的方式去调用。如果调用A失败,则不会盲目去调用B。如果调用A成功,而调用B失败,会尝试去回滚刚刚对A的调用操作。
当然,有些时候我们不必严格提供单独对应的回滚接口,可以通过传递参数巧妙的实现。
这样的情况,我们会尽量把可提供回滚接口的服务放在前面。举个例子说明:
我们的某个论坛网站,每天登录成功后会奖励用户5个积分,但是积分和用户又是两套独立的子系统服务,对应不同的DB,这控制起来就比较麻烦了。解决思路:
把登录和加积分的服务调用放在BFF层一个本地方法中。
当用户请求登录接口时,先执行加积分操作,加分成功后再执行登录操作
如果登录成功,那当然最好了,积分也加成功了。如果登录失败,则调用加积分对应的回滚接口(执行减积分的操作)。
总结:这种方式缺点比较多,通常在复杂场景下是不推荐使用的,除非是非常简单的场景,非常容易提供回滚,而且依赖的服务也非常少的情况。
这种实现方式会造成代码量庞大,耦合性高。而且非常有局限性,因为有很多的业务是无法很简单的实现回滚的,如果串行的服务很多,回滚的成本实在太高
本地消息表
这种实现方式的思路,其实是源于ebay,后来通过支付宝等公司的布道,在业内广泛使用。其基本的设计思想是将远程分布式事务拆分成一系列的本地事务。如果不考虑性能及设计优雅,借助关系型数据库中的表即可实现。
举个经典的跨行转账的例子来描述
扣款1W,通过本地事务保证了凭证消息插入到消息表中。
通知对方银行账户上加1W了。那问题来了,如何通知到对方呢?
通常采用两种方式:
采用时效性高的MQ,由对方订阅消息并监听,有消息时自动触发事件
采用定时轮询扫描的方式,去检查消息表的数据。
两种方式其实各有利弊,仅仅依靠MQ,可能会出现通知失败的问题。而过于频繁的定时轮询,效率也不是最佳的(90%是无用功)。所以,我们一般会把两种方式结合起来使用。
解决了通知的问题,又有新的问题了。万一这消息有重复被消费,往用户帐号上多加了钱,那岂不是后果很严重?
仔细思考,其实我们可以消息消费方,也通过一个“消费状态表”来记录消费状态。在执行“加款”操作之前,检测下该消息(提供标识)是否已经消费过,消费完成后,通过本地事务控制来更新这个“消费状态表”。这样子就避免重复消费的问题。
总结:上诉的方式是一种非常经典的实现,基本避免了分布式事务,实现了“最终一致性”。但是,关系型数据库的吞吐量和性能方面存在瓶颈,频繁的读写消息会给数据库造成压力。所以,在真正的高并发场景下,该方案也会有瓶颈和限制的。
MQ(非事务消息)
通常情况下,在使用非事务消息支持的MQ产品时,我们很难将业务操作与对MQ的操作放在一个本地事务域中管理。通俗点描述,还是以上述提到的“跨行转账”为例,我们很难保证在扣款完成之后对MQ投递消息的操作就一定能成功。这样一致性似乎很难保证。
先从消息生产者这端来分析,请看伪代码:
根据上述代码及注释,我们来分析下可能的情况:
操作数据库成功,向MQ中投递消息也成功,皆大欢喜
操作数据库失败,不会向MQ中投递消息了
操作数据库成功,但是向MQ中投递消息时失败,向外抛出了异常,刚刚执行的更新数据库的操作将被回滚
上面分析的几种情况来看,貌似问题都不大的。那么我们来分析下消费者端面临的问题:
消息出列后,消费者对应的业务操作要执行成功。如果业务执行失败,消息不能失效或者丢失。需要保证消息与业务操作一致
尽量避免消息重复消费。如果重复消费,也不能因此影响业务结果
如何保证消息与业务操作一致,不丢失?
主流的MQ产品都具有持久化消息的功能。如果消费者宕机或者消费失败,都可以执行重试机制的(有些MQ可以自定义重试次数)
如何避免消息被重复消费造成的问题?
保证消费者调用业务的服务接口的幂等性
通过消费日志或者类似状态表来记录消费状态,便于判断(建议在业务上自行实现,而不依赖MQ产品提供该特性)
总结:这种方式比较常见,性能和吞吐量是优于使用关系型数据库消息表的方案。如果MQ自身和业务都具有高可用性,理论上是可以满足大部分的业务场景的。不过在没有充分测试的情况下,不建议在交易业务中直接使用。
TMQ(事务消息)
举个例子,Bob向Smith转账,那我们到底是先发送消息,还是先执行扣款操作?
好像都可能会出问题。如果先发消息,扣款操作失败,那么Smith的账户里面会多出一笔钱。反过来,如果先执行扣款操作,后发送消息,那有可能扣款成功了但是消息没发出去,Smith收不到钱。除了上面介绍的通过异常捕获和回滚的方式外,还有没有其他的思路呢?
下面以阿里巴巴的RocketMQ中间件为例,分析下其设计和实现思路。
RocketMQ第一阶段发送Prepared消息时,会拿到消息的地址,第二阶段执行本地事物,第三阶段通过第一阶段拿到的地址去访问消息,并修改状态。细心的读者可能又发现问题了,如果确认消息发送失败了怎么办?RocketMQ会定期扫描消息集群中的事物消息,这时候发现了Prepared消息,它会向消息发送者确认,Bob的钱到底是减了还是没减呢?如果减了是回滚还是继续发送确认消息呢?RocketMQ会根据发送端设置的策略来决定是回滚还是继续发送确认消息。这样就保证了消息发送与本地事务同时成功或同时失败。如下图:
总结:据笔者的了解,各大知名的电商平台和互联网公司,几乎都是采用类似的设计思路来实现“最终一致性”的。这种方式适合的业务场景广泛,而且比较可靠。不过这种方式技术实现的难度比较大。目前主流的开源MQ(ActiveMQ、RabbitMQ、Kafka)均未实现对事务消息的支持,所以需二次开发或者新造轮子。比较遗憾的是,RocketMQ事务消息部分的代码也并未开源,需要自己去实现。
其他补偿方式
做过支付宝交易接口的同学都知道,我们一般会在支付宝的回调页面和接口里,解密参数,然后调用系统中更新交易状态相关的服务,将订单更新为付款成功。同时,只有当我们回调页面中输出了success字样或者标识业务处理成功相应状态码时,支付宝才会停止回调请求。否则,支付宝会每间隔一段时间后,再向客户方发起回调请求,直到输出成功标识为止。
其实这就是一个很典型的补偿例子,跟一些MQ重试补偿机制很类似。
一般成熟的系统中,对于级别较高的服务和接口,整体的可用性通常都会很高。如果有些业务由于瞬时的网络故障或调用超时等问题,那么这种重试机制其实是非常有效的。
当然,考虑个比较极端的场景,假如系统自身有bug或者程序逻辑有问题,那么重试1W次那也是无济于事的。那岂不是就发生了“明明已经付款,却显示未付款不发货”类似的悲剧?
其实为了交易系统更可靠,我们一般会在类似交易这种高级别的服务代码中
加入详细日志记录的,一旦系统内部引发类似致命异常,会有邮件通知。
后台会有定时任务扫描和分析此类日志,检查出这种特殊的情况,会尝试通过程序来补偿并邮件通知相关人员。
在某些特殊的情况下,还会有“人工补偿”的,这也是最后一道屏障。
相关问题
数据库是否需要进行垂直分库?
根据系统架构和公司实际情况来,如果你们的系统还是个简单的单体应用,并且没有什么访问量和数据量,那就别着急折腾“垂直分库”了,否则没有任何收益,也很难有好结果。
切记,“过度设计”和“过早优化”是很多架构师和技术人员常犯的毛病。
上面举例的都太简单了,我们的后台报表系统中join的表都有n个了, 分库后该怎么查?
有很多朋友跟我提过类似的问题。其实互联网的业务系统中,本来就应该尽量避免join的,如果有多个join的,要么是设计不合理,要么是技术选型有误。请自行科普下OLAP和OLTP,报表类的系统在传统BI时代都是通过OLAP数据仓库去实现的(现在则更多是借助离线分析、流式计算等手段实现),而不该向上面描述的那样直接在业务库中执行大量join和统计。
Ref:
http://blog.csdn.net/dinglang_2009/article/details/53195835
http://www.infoq.com/cn/articles/solution-of-distributed-system-transaction-consistency
背景
你已经采用了每服务每数据库模式。每个服务都有独自的数据库。然而,一些业务事务跨越了多个服务,因此你需要一个机制确保跨服务的数据一致性。比如,设想下你构建一个电商应用,客户拥有信用额度。应用程序必须确保一个新订单没有超出客户的信用额度。由于订单和顾客数据在不同的数据库,应用程序无法简单的采用一个本地的ACID事务。
问题
怎么跨服务管理数据一致性?
限制
2PC不是个可选项
解决方案
用Saga来实现跨越多个服务的业务事务。Saga代表着一系列本地事务。每个本地事务更新数据库,发布消息或事件来触发Saga里的下一个本地事务。如果一个本地事务由于违反了业务规则而失败,Saga执行一系列补偿事务以撤回被前面事务产生的更改。
Saga模式代替两阶段提交
有两种方式可以协调Saga:
Choreography - 每个本地事务发起领域事件,触发其他服务里的本地事务
Orchestration - Orchestrator 对象告诉参与者执行哪个本地事务
示例:基于Choreography的Saga
Choreography
电商应用采用choreography为基础的方法创建订单,将按照以下步骤:
Order Service创建一个pending状态的订单,并发布OrderCreated事件
Customer Service收到事件,尝试验证订单的信用。它发起Credit Reserved事件或者Credit Limit Exceeded事件
Order Service收到事件,将订单状态修改为approved或者cancelled
示例:基于Orchestration的Saga
Orchestration
电商应用采用orchestration为基础的方法创建订单,将按照以下步骤:
Order Service创建一个pending状态的订单,并创建一个CreateOrderSaga
CreateOrderSaga往Customer Service发送ReserveCredit命令
Customer Service尝试验证订单信用,并发送一个回复
CreateOrderSaga接收回复,往Order Service发送ApproveOrder或者RejectOrder命令
Order Service修改订单的状态为approved或者cancelled
结果
这个模式有如下优势:
允许应用跨越多个服务管理市局一致性,而不使用分布式事务
这个解决方案有如下弊端:
编程模型更加复杂。比如,开发人员必须设计补偿事务,明确撤回Saga早些时候做出的更改。
还有如下问题需要解决:
为了可靠,服务必须原子的更新数据库和发布事件。不能使用跨越数据库和消息队列的传统分布式事务的机制。相反,必须采用如下列出的一种模式。
相关模式
每服务每数据库产生了对这个模式的需求
如下模式是原子性的更新状态和发布事件的方法:
参见
作者的书Microservices patterns从更多细节介绍了这个模式. 这本书的示例应用采用Eventuate Tram Sagas framework来实现了Saga
作者的MicroXchg 2018 presentation(幻灯片和视频)
以下例子用不同方式实现了客户和订单的例子:
Choreography-based saga,服务用Eventuate Tram framework发布领域事件
Orchestration-based saga,Order Service使用Eventuate Tram Sagas framework实现的orchestrator Saga
Choreography and event sourcing-based saga,服务使用Eventuate event sourcing framework发布领域事件
作者的两篇InfoQ文章Developing Transactional Microservices Using Aggregates, Event Sourcing and CQRS 介绍了如何使用 event sourcing 来实现 choreography Saga