Theorem Goal

In this paper,we focus all our attention on this frational space and more pricisely the fractional space,the Bessel potential space H ^ { s , p } ( \Omega ) .Before we start any discussion,we give the universal definition of the Bessel potential space .

\left. \begin{array}{l}{ H ^ { s , p } ( R ^ { N } ) = \{ u \in L ^ { p } ( R ^ { N } ) : ( - \Delta ) ^ { s / 2 } u \in L ^ { p } ( R ^ { N } ) \} }\\{ \tilde { H } ^ { s , p } ( \Omega ) = \{ u \in H ^ { s , p } ( R ^ { N } ) : u \equiv 0 \quad \text { on } R ^ { N } \backslash \Omega \} }\end{array} \right.

\begin{aligned}H ^ { s , p } ( R ^ { N } ) &= \{ u \in L ^ { p } ( R ^ { N } ) : ( - \Delta ) ^ { s / 2 } u \in L ^ { p } ( R ^ { N } ) \} \\ &H ^ { s , p } ( R ^ { N } ) &=u \in H ^ { s , p } ( R ^ { N } ) : u \equiv 0 \quad \text { on } R ^ { N\backslash\Omega}\}end{aligned}

Theorem. Letu \subset H ^ { s , p } ( \Omega ) which is the Bessel potential space and to some degree ,equivalent to the fractional Sobolev spaces W ^ { s , p }( \Omega ) where both of them in bounded domain( \Omega ), be a sequence of functions such that \| ( - \Delta ) ^ { s } u \| _ { L^2 ( \Omega ) } \leq 1andu_{\epsilon} \rightharpoonup u_{0} weakly in H_{0}^{s}(\Omega). Then for any p < 1 / ( 1 - \| ( - \Delta ) ^ { s /2} u _ { \epsilon} \| _ { 2 } ^ { 2 } ).

\underset { \epsilon \rightarrow 0 } { \operatorname { lim sup } } \int _ { \Omega } e ^ { {\alpha _ { n , 2 }} p u _ { \epsilon } ^ { 2 } } d x < + \infty

W ^ { s , p } ( \Omega ) : = \{ u \in L ^ { p } ( \Omega ) : \frac { | u ( x ) - u ( y ) | } { | x - y | ^ { \frac { n } { p } + s } } \in L ^ { p } ( \Omega \times \Omega ) \}

H ^ { s , p } ( \Omega ) W ^ { s , p }

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。