pytorch中的train.eval() 与 with torch.no_grad()的使用

一、train.eval(),用在模型的测试阶段,目的是冻结normalization、dropout层的作用,直接使用其结果,不再进行重新的计算。

二、在神经网络结构中,tenor的计算操作,默认是要进行计算图的构建的,为了不部分内容不进行计算图的构建,不进行反向传播操作,需要使用with torch.no_grad():进行内容的强制。可以看下两种使用的区别:



©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容