leveldb源码学习--BloomFilter布隆过滤器

基本理论

详细理论及证明请看这篇博文--Bloom Filter概念和原理。强烈建议花半个小时仔细去阅读一下这篇文章,本文后续的介绍将以上述文章作为基础。
这里将几个结论先列出来(证明请参考上面的超链接):
结论一: 在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)
结论二: Bloom Filter通过极少的错误换取了存储空间的极大节省
结论三: k = ln2· (m/n)时取得最优的哈希函数的个数
结论四: 在错误率不大于є的情况下,m至少要等于n log2(1/є)才能表示任意n个元素的集合。
结论五: 在哈希函数的个数取到最优时,要让错误率不超过є,m至少需要取到最小值的1.44倍。

源码实现

成员变量

 private:
  size_t bits_per_key_;
  size_t k_;

bits_per_key_表示m/nk_表示选取哈希函数的个数,当然在leveldb中并不是真的使用了k_种哈希函数,而是采用的double hashing来模拟多个hash函数。模拟原理如下:

Gi(x)=H1(x)+iH2(x)
H2(x)=(H1(x)>>17) | (H1(x)<<15)

成员函数

构造函数

explicit BloomFilterPolicy(int bits_per_key)
      : bits_per_key_(bits_per_key) {
    // We intentionally round down to reduce probing cost a little bit
    k_ = static_cast<size_t>(bits_per_key * 0.69);  // 0.69 =~ ln(2)
    if (k_ < 1) k_ = 1;
    if (k_ > 30) k_ = 30;
  }

看看结论三,应该就知道为何要用bits_per_key_*0.69了吧😄。

CreateFilter(const Slice* keys, int n, std::string* dst)

    // Compute bloom filter size (in both bits and bytes)
    size_t bits = n * bits_per_key_;

    // For small n, we can see a very high false positive rate.  Fix it
    // by enforcing a minimum bloom filter length.
    if (bits < 64) bits = 64;

    size_t bytes = (bits + 7) / 8;
    bits = bytes * 8;

    const size_t init_size = dst->size();
    dst->resize(init_size + bytes, 0);

首先根据n的值计算出m(bytes),然后计算并分配所需空间。

    dst->push_back(static_cast<char>(k_));  // Remember # of probes in filter

在filter的最后压入哈希函数的个数。

    char* array = &(*dst)[init_size];
    for (int i = 0; i < n; i++) {
      // Use double-hashing to generate a sequence of hash values.
      // See analysis in [Kirsch,Mitzenmacher 2006].
      uint32_t h = BloomHash(keys[i]);
      const uint32_t delta = (h >> 17) | (h << 15);  // Rotate right 17 bits
      for (size_t j = 0; j < k_; j++) {
        const uint32_t bitpos = h % bits;
        array[bitpos/8] |= (1 << (bitpos % 8));
        h += delta;
      }
    }
  }

对于每个key采用double hash的方式生成k_bitpos,然后在array的相应位置设置1

KeyMayMatch(const Slice& key, const Slice& bloom_filter)

const size_t len = bloom_filter.size();
    if (len < 2) return false;

    const char* array = bloom_filter.data();
    const size_t bits = (len - 1) * 8;

    // Use the encoded k so that we can read filters generated by
    // bloom filters created using different parameters.
    const size_t k = array[len-1];
    if (k > 30) {
      // Reserved for potentially new encodings for short bloom filters.
      // Consider it a match.
      return true;
    }

准备工作,以及一些基本的判断

   uint32_t h = BloomHash(key);
    const uint32_t delta = (h >> 17) | (h << 15);  // Rotate right 17 bits
    for (size_t j = 0; j < k; j++) {
      const uint32_t bitpos = h % bits;
      if ((array[bitpos/8] & (1 << (bitpos % 8))) == 0) return false;
      h += delta;
    }
    return true;

计算keyhash值,重复计算阶段的步骤,循环计算k_hash值,只要有一个结果对应的bit位为0,就认为不匹配,否则认为匹配

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容