1. Objective-C 中创建线程的方法是什么?如果在主线程中执行代码,方法是什么?如果想延时执行代码、方法又是什么?
线程创建有三种方法:使用NSThread创建、使用GCD的dispatch、使用子类化的NSOperation,然后将其加入NSOperationQueue;在主线程执行代码。
方法是performSelectorOnMainThread,如果想延时执行代码可以用performSelector:onThread:withObject:waitUntilDone:。
2. 有哪些对象和变量需要释放掉?
如:线程的queue, 绘制图片的上下文等;
3. RunLoop 的5种运行方式是什么?
kCFRunLoopDefaultMode:
UITrackingRunLoopMode:
UIInitializationaRunLoopMode:
GSEventReceiveRunLoopMode:
KCFCommonRunLoopModes:
4.我们说的OC是动态运行时语言是什么意思?
主要是将数据类型的确定由编译时,推迟到了运行时。
简单来说, 运行时机制使我们直到运行时才去决定一个对象的类别,以及调用该类别对象指定方法。
5. GCD 与 NSOperation 的区别:
GCD 和 NSOperation 都是用于实现多线程:
GCD 基于C语言的底层API,GCD主要与block结合使用,代码简洁高效。
NSOperation 属于Objective-C类,是基于GCD更高一层的封装。复杂任务一般用NSOperation实现。
6. 写出使用GCD方式从子线程回到主线程的方法代码
dispatch_sync(dispatch_get_main_queue(), ^{ });
7. 如何用GCD同步若干个异步调用?(如根据若干个url异步加载多张图片,然后在都下载完成后合成一张整图)
// 使用Dispatch Group追加block到Global Group Queue,这些block如果全部执行完毕,就会执行Main Dispatch Queue中的结束处理的block。
// 创建队列组
dispatch_group_t group = dispatch_group_create();
// 获取全局并发队列
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_group_async(group, queue, ^{ /*加载图片1 */ });
dispatch_group_async(group, queue, ^{ /*加载图片2 */ });
dispatch_group_async(group, queue, ^{ /*加载图片3 */ });
// 当并发队列组中的任务执行完毕后才会执行这里的代码
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
// 合并图片
});
8. dispatch_barrier_async(栅栏函数)的作用是什么?
函数定义:dispatch_barrier_async(dispatch_queue_t queue, dispatch_block_t block);
作用:
1.在它前面的任务执行结束后它才执行,它后面的任务要等它执行完成后才会开始执行。
2.避免数据竞争
// 1.创建并发队列
dispatch_queue_t queue = dispatch_queue_create("myQueue", DISPATCH_QUEUE_CONCURRENT);
// 2.向队列中添加任务
dispatch_async(queue, ^{ // 1.2是并行的
NSLog(@"任务1, %@",[NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"任务2, %@",[NSThread currentThread]);
});
dispatch_barrier_async(queue, ^{
NSLog(@"任务 barrier, %@", [NSThread currentThread]);
});
dispatch_async(queue, ^{ // 这两个是同时执行的
NSLog(@"任务3, %@",[NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"任务4, %@",[NSThread currentThread]);
});
// 输出结果: 任务1 任务2 ——》 任务 barrier ——》任务3 任务4
// 其中的任务1与任务2,任务3与任务4 由于是并行处理先后顺序不定。
参考资料:GCD(III)
9. 以下代码运行结果如何?
- (void)viewDidLoad {
[super viewDidLoad];
NSLog(@"1");
dispatch_sync(dispatch_get_main_queue(), ^{
NSLog(@"2");
});
NSLog(@"3");
}
// 只输出:1。(主线程死锁)
10. 什么是 RunLoop?
从字面上讲就是运行循环,它内部就是do-while循环,在这个循环内部不断地处理各种任务。
一个线程对应一个RunLoop,基本作用就是保持程序的持续运行,处理app中的各种事件。通过runloop,有事运行,没事就休息,可以节省cpu资源,提高程序性能。
主线程的run loop默认是启动的。iOS的应用程序里面,程序启动后会有一个如下的main()函数
int main(int argc, char * argv[]) {
@autoreleasepool {
return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
}
}
参考资料:RunLoop 详细介绍
11. OC中创建线程的方法是什么?如果在主线程中执行代码,方法是什么?
// 创建线程的方法
- [NSThread detachNewThreadSelector:nil toTarget:nil withObject:nil]
- [self performSelectorInBackground:nil withObject:nil];
- [[NSThread alloc] initWithTarget:nil selector:nil object:nil];
- dispatch_async(dispatch_get_global_queue(0, 0), ^{});
- [[NSOperationQueue new] addOperation:nil];
// 主线程中执行代码的方法
- [self performSelectorOnMainThread:(SEL)aSelector withObject:nil waitUntilDone:YES];
- dispatch_async(dispatch_get_main_queue(), ^{});
- [[NSOperationQueue mainQueue] addOperation:nil];
12. 你用过NSOperationQueue么?如果用过或者了解的话,你为什么要使用NSOperationQueue,实现了什么?请描述它和G.C.D的区别和类似的地方(提示:可以从两者的实现机制和适用范围来描述)
使用NSOperationQueue用来管理子类化的NSOperation对象,控制
其线程并发数目。GCD和NSOperation都可以实现对线程的管理,区别
是 NSOperation和NSOperationQueue是多线程的面向对象抽象。项目中
使用NSOperation的优点是NSOperation是对线程的高度抽象,在项目中
使用它,会使项目的程序结构更好,子类化NSOperation的设计思路,
是具有面向对象的优点(复用、封装),使得实现是多线程支持,而接
口简单,建议在复杂项目中使用。
项目中使用GCD的优点是GCD本身非常简单、易用,对于不复杂的多线
程操作,会节省代码量,而Block参数的使用,会是代码更为易读,建议
在简单项目中使用。
13. iOS 的几种线程锁?
互斥锁
:用于多线程编程,防止两条线程同时对同一公共资源进行读写的机制;
@synchronized 简单、效率最低。
NSLock 不能多次调用 lock方法,会造成死锁;
pthread_mutex
自旋锁
:采用信号的一种同步方式
dispatch_semaphore 使用信号量来获取更多的取值空间,用来实现更加复杂的同步,而不单单是线程间互斥;
OSSpinLock
递归锁
:同一个线程可以加锁N次而不会引发死锁
NSRecursiveLock
条件锁
: 条件变量,当进程的某些资源要求不满足时就进入休眠,也就是锁住了。当资源被分配到了,条件锁打开,进程继续运行
NSCondition
NSConditionLock
遵循NSLocking协议,使用的时候同样是lock,unlock加解锁,wait是傻等,waitUntilDate:方法是等一会,都会阻塞掉线程,signal是唤起一个在等待的线程,broadcast是广播全部唤起。
读写锁
//加读锁
pthread_rwlock_rdlock(&rwlock);
//解锁
pthread_rwlock_unlock(&rwlock);
//加写锁
pthread_rwlock_wrlock(&rwlock);
//解锁
pthread_rwlock_unlock(&rwlock);
14. NSThread、NSOperationQueue、GCD 3种线程的认知
1) NSThread 是这三种范式里面相对轻量级的,但也是使用起来最负责的,
你需要自己管理thread的生命周期,线程之间的同步。线程共享同一应用程序的部分内存空间,
它们拥有对数据相同的访问权限。你得协调多个线程对同一数据的访问,
一般做法是在访问之前加锁,这会导致一定的性能开销。
2) NSOperationQueue 以面向对象的方式封装了用户需要执行的操作,
我们只要聚焦于我们需要做的事情,而不必太操心线程的管理,同步等事情,
因为NSOperation已经为我们封装了这些事情。
NSOperation 是一个抽象基类,我们必须使用它的子类。
3) GCD: iOS4 才开始支持,它提供了一些新的特性,以及运行库来支持多核并行编程,
它的关注点更高:如何在多个cpu上提升效率。
总结:
- NSThread是早期的多线程解决方案,实际上是把C语言的PThread线程管理代码封装成OC代码。
- GCD是取代NSThread的多线程技术,C语法+block。功能强大。
- NSOperationQueue是把GCD封装为OC语法,额外比GCD增加了几项新功能。
* 最大线程并发数
* 取消队列中的任务
* 暂停队列中的任务
* 可以调整队列中的任务执行顺序,通过优先级
* 线程依赖
* NSOperationQueue支持KVO。这就意味着你可以观察任务的状态属性。
但是NSOperationQueue的执行效率没有GCD高,所以一半情况下,我们使用GCD来完成多线程操作。
15. 多个网络请求完成后执行下一步,有几种解决方案?
使用dispatch_group
-(void)Btn2{
NSString *str = @"http://www.jianshu.com/p/6930f335adba";
NSURL *url = [NSURL URLWithString:str];
NSURLRequest *request = [NSURLRequest requestWithURL:url];
NSURLSession *session = [NSURLSession sharedSession];
dispatch_group_t downloadGroup = dispatch_group_create();
for (int i=0; i<10; i++) {
dispatch_group_enter(downloadGroup);
NSURLSessionDataTask *task = [session dataTaskWithRequest:request completionHandler:^(NSData * _Nullable data, NSURLResponse * _Nullable response, NSError * _Nullable error) {
NSLog(@"%d---%d",i,i);
dispatch_group_leave(downloadGroup);
}];
[task resume];
}
dispatch_group_notify(downloadGroup, dispatch_get_main_queue(), ^{
NSLog(@"end");
});
}
创建一个dispatch_group_t, 每次网络请求前先dispatch_group_enter,请求回调后再dispatch_group_leave,对于enter和leave必须配合使用,有几次enter就要有几次leave,否则group会一直存在。当所有enter的block都leave后,会执行dispatch_group_notify的block。
采用信号量dispatch_semaphore_t
-(void)Btn3{
NSString *str = @"http://www.jianshu.com/p/6930f335adba";
NSURL *url = [NSURL URLWithString:str];
NSURLRequest *request = [NSURLRequest requestWithURL:url];
NSURLSession *session = [NSURLSession sharedSession];
dispatch_semaphore_t sem = dispatch_semaphore_create(0);
for (int i=0; i<10; i++) {
NSURLSessionDataTask *task = [session dataTaskWithRequest:request completionHandler:^(NSData * _Nullable data, NSURLResponse * _Nullable response, NSError * _Nullable error) {
NSLog(@"%d---%d",i,i);
count++;
if (count==10) {
dispatch_semaphore_signal(sem);
count = 0;
}
}];
[task resume];
}
dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER);
dispatch_async(dispatch_get_main_queue(), ^{
NSLog(@"end");
});
}
dispatch_semaphore信号量为基于计数器的一种多线程同步机制。如果semaphore计数大于等于1,计数-1,返回,程序继续运行。如果计数为0,则等待。dispatch_semaphore_signal(semaphore)为计数+1操作,dispatch_semaphore_wait(sema, DISPATCH_TIME_FOREVER)为设置等待时间,这里设置的等待时间是一直等待。
对于以上代码通俗一点就是,开始为0,等待,等10个网络请求都完成了,dispatch_semaphore_signal(semaphore)为计数+1,然后计数-1返回,程序继续执行。(这里也就是为什么有个count变量的原因,记录网络回调的次数,回调10次之后再发信号量,使后面程序继续运行)。
使用dispatch_barrier_async(栅栏函数)
dispatch_barrier_sync(dispatch_queue_t queue, ^{
})
在它前面的任务执行结束后它才执行,它后面的任务要等它执行完成后才会开始执行,
避免数据竞争
GCD(III)
15. OC 的锁有哪些?
@synchronized. 加锁的对象需要是同一个对象
NSLock 对象锁。 多次lock死锁
NSRecursiveLock 递归锁。 场景限制
NSConditionLock 条件锁。
pthread_mutex (C语言)互斥锁 linux 底层
dispatch_semaphore (GCD)。 信号量
OSSpinLock (不建议使用)
16. 自旋和互斥对比?
相同点:都能保证同一时间只有一个线程访问共享资源。都能保证线程安全。
不同点:
互斥锁:如果共享数据已经有其他线程加锁了,线程会进入休眠状态等待锁。一旦被访问的资源被解锁,则等待资源的线程会被唤醒。
自旋锁:如果共享数据已经有其他线程加锁了,线程会以死循环的方式等待锁,一旦被访问的资源被解锁,则等待资源的线程会立即执行。
自旋锁的效率高于互斥锁。
17. 使用以上锁需要注意哪些?
使用自旋锁时要注意:
由于自旋时不释放CPU,因而持有自旋锁的线程应该尽快释放自旋锁,否则等待该自旋锁的线程会一直在哪里自旋,这就会浪费CPU时间。
持有自旋锁的线程在sleep之前应该释放自旋锁以便其它线程可以获得该自旋锁。内核编程中,如果持有自旋锁的代码sleep了就可能导致整个系统挂起。
使用任何锁都需要消耗系统资源(内存资源和CPU时间),这种资源消耗可以分为两类:
1.建立锁所需要的资源
2.当线程被阻塞时所需要的资源
使用互斥锁的注意:
由于是互斥锁,当一个线程进行访问的时候,该线程获得锁,其他线程进行访问的时候,将被操作系统挂起,直到该线程释放锁,其他线程才能对其进行访问,从而却确保了线程安全。但是如果连续锁定两次,则会造成死锁问题。
两种锁的加锁原理:
互斥锁:线程会从sleep(加锁)——>running(解锁),过程中有上下文的切换(主动出让时间片,线程休眠,等待下一次唤醒),cpu的抢占,信号的发送等开销。
自旋锁:线程一直是running(加锁——>解锁),死循环(忙等 do-while)检测锁的标志位,机制不复杂。
``
``
``
``
``
``