数据分析'三大手法'-细分分析

作为业务部门的数据分析师,经常面临的场景就是分析异常。比如老板找到你说:“小伙,帮我分析下最近一周的GMV下降的原因”。很多人拿到这个问题的时候就开始直接去找各个维度来拆分看了,最后还是一脸茫然。

首先拿到这个问题时,我们需要用之前那篇文章提到的分析方法,描述和对比分析法。就是采用描述性分析方法,看具体的GMV值下降了多少,以及采用趋势和对比的方法来判断是不是真正的异常,有可能去年同期也是节假日后的正常下降。这个过程就像侦探探案时了解一些案发现场的基础信息。在对异常有了基础认知之后,想要了解真相,需要细分的思维方法,一步步分解还原案发的蛛丝马迹。但是怎么细分,以及按照什么样的套路细分是有讲究的。

首先介绍细分常见的方法,笔者将其归纳为3类。通常在分析一个具体问题中可能会多种一起使用。

01 结构细分

第一类是按照结构进行细分:

- 事物或组织本身的结构;产线的区分(如化妆品类,生鲜类等),区域的区分(如华东/华西/华南大区),渠道的区分(APP/小程序/PC端)等;

- 杜邦分析法,是杜邦公司发明的,采用金字塔结构,把企业净资产收益率逐级分解为多项财务指标的比值或乘积。这个借鉴于我们常规的指标体系的分析中。比如在文首遇到的那个情景,GMV同比下降30%,可以按照杜邦分析法进行指标拆解,定位是UV少了,还是cr下降了,还是客单价降低主要影响。

-分组分析法,根据一定标准对研究对象进行分组。分组分析法分为属性指标分组和数量指标分组。而属性指标所代表的数据不能进行运算,只是说明事物的性质、特征。如人的姓名、部门、性别、文化程度等指标,可以按照一定规则分组,比如页面引流中对于同组织下:内部引流,其他为外部引流。

数量指标所代表的数据能够进行加减乘除运算,说明事物的数量特征,比如人的年龄、工资水平、企业的资产等指标,例如年龄属性:1-17:青少年,18-35青年,35-55中年,55以上老年;

-矩阵分析法,又称四象限分析法,源自著名的BCG矩阵,多用于产品组合战略分析中,实现产品及资源分配结构的良性循环,明星/现金牛/廋狗/问题产品。在分析场景中,可以用来评估两种因素对于不同组的影响差异时,识别不同组间不同的业务策略。比如说评估业务中各个大区的GMV占比vsGMV同比增长率,识别到重点核心大区和有机会的大区。

02 时间流程

第二类是时间(流程)维度:

- 时间颗粒度下的细分,按年/月/周/日对齐的方式细分看异常是否集中于某一时间段;

- 漏斗分析法,这是互联网用于行为分析中使用较多的分析法,分析从潜在用户到最终用户这个过程中用户数量的变化情况,确定整个流程的设计是否合理,各步骤的优劣,和是否存在优化的机会。

-客户生命周期的方法,主要应用的场景是用户运营,聚焦不同阶段用户运营的策略,平时接触不多,就不展开。

03 程度属性

第三类是程度分析方法,聚焦关注重点:

-ABC分析法,又称帕累托图法。据事物在技术或经济方面的主要特征,进行分类排队,分清重点和一般,从而有区别地确定管理方式的一种分析方法。A类是我们重点关注的。比如可以在平台上去识别A类SKU带来累计GMV达80%,B类和C类占比剩余20%,理清楚平台的重点品类。

A类因素,发生累计频率为0%~80%,是主要影响因素。

B类因素,发生累计频率为80%~90%,是次要影响因素。

C类因素,发生累计频率为90%~100%,是一般影响因素。

04 应用

案例使用:

在日常指标分析过程中,一般常用的是杜邦分析,结构细分和漏斗想结合的方式来定位异常点

1-我们通过定位发现近期GMV的下降,首先拆解日期来看,没有集中在哪一天有异常;

2- 通过杜邦分析法拆解为UV*cr*客单价三个部分,定位到是转化率cr的下将是主要影响成分。

3- 拆解cr的过程,按照 详情页-填写页-提交订单-支付订单漏斗流程中去拆解发现是在填写页到提交订单这个过程转化率下降。

4- 使用常见单维度因素去识别:平台(APP/H5/PC),主要影响是APP,产线(门票/跟团/酒店)无差异;

5- 拆解ios/安卓系统,版本维度拆解去看是否对这个过程的影响;识别到时填写页验证码有bug导致 这个步骤转化率变低,从而识别到改进点。

以上这个案例是将平时的分析过程进行了简化,但是方法和套路是不变的,多加练习,用好细分分析手法,拆解定位问题信手拈来。

下图附上我整理的原因分析方法的思维导图。更多私藏数据分析资料,欢迎关注公众号数据氧气,恢复【POWER BI】获取。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351