第二章 矩阵

伴随矩阵和矩阵之间的关系:
1、det( adj(A) ) = ( det(A) ) ^ n-1
2、det( I * det(A) ) = det(A)^n

如何证明det( adj(A) ) = ( det(A) ) ^ n-1?涉及习题(二)第6选择题
证明:

A^-1 = adj(A) / det(A)
==> A^-1 * det(A) = adj(A)
==> A * A^-1 * det(A) = A * adj(A)
==> I * det(A) = A * adj(A)
==> det( I * det(A) ) = det(A) * det( adj(A) )
==> det(A)^n = det(A) * det( adj(A) )
==> det(A)^n / det(A) = det( adj(A) )
==> det(A)^n-1 = det( adj(A) )

其中,I为单位矩阵,以下公式要学会应用:
| k × I(2 × 2) | = k^2
| k × I(3 × 3) | = k^3
| k × I(n × n) | = k^n
| det(A) × I(n × n) | = det(A)^n

参考资料:
① themathinstructor https://www.youtube.com/watch?v=q832pCIvItI

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容