从Shortest Palindrome@LeetCode理解KMP

Shortest Palindrome

用Java暴力是可以过的,思路也很简单:补充完成之后的回文串中心必定在原字符串中,所以原字符串以第一个字符为起点必然存在至少一个回文串(长度可以为1),那么任务就变为找到原字符串中以第一个字符为起点最长的回文串,找到之后剩下的工作就是把剩余部分的翻转补充到原字符串头部即可。

这样代码逻辑就很简单,就是从原字符串的头部开始截取子串,长度递减,直到获取到第一个是回文串的子串,此时就找到了需要截断的部分,从该位置开始到原字符串末尾就是需要截取并翻转拼接的部分。算法复杂度是O(n^2)

实现代码:

public class Solution {
    public String shortestPalindrome(String s) {
        if (s == null || s.length() == 0 || s.length() == 1) return s;
        int len = s.length(), tail = len;
        StringBuilder builder = new StringBuilder();
        while (1 < tail) {
            if (isPalindrome(s.substring(0, tail))) {
                builder = builder.append(s.substring(tail, len)).reverse();
                break;
            }
            tail--;
        }
        if (builder.length() == 0) {
            builder = builder.append(s.substring(tail, len)).reverse();
        }
        return builder.append(s).toString();
    }

    private boolean isPalindrome(String str) {
        int len = str.length();
        for (int i = 0; i < len / 2; i++) {
            if (str.charAt(i) != str.charAt(len - i - 1))
                return false;
        }
        return true;
    }
}

LeetCode做多了也就知道O(n^2)的算法必然有改进版,自己思考了下没有悟出来,就参考了这篇文章:[LeetCode] Shortest Palindrome 最短回文串

其实思路也很简单:

  1. 求字符串s的翻转s_rev
  2. 将两个字符串进行拼接:{s}#{s_rev}
  3. 找出新字符串中最长公共前缀后缀长度comLen
  4. s_rev.substring(0, s.length() - comLen)就是在原字符串头部插入的子串部分

举个例子:

对于字符串sbabcd,先求rev_sdcbaba,拼接之后:babcd#dcbaba。上文已经解释过,s的前缀必然是一个回文串(长度可能为1),任务就是求这个回文串的最长长度,因此拼接之后的{s}#{s_rev}必然有公共前缀后缀,任务就是求这个公共前缀后缀的最长长度,那么这个时候就需要祭出KMP算法了。有了解的同学,估计一看就看出这个就是求KMP里的next数组。由于之前学KMP的时候也只学了个一知半解,所以这次又重新学习了下从头到尾彻底理解KMP(2014年8月22日版),这下对KMP又有更好的理解了。

详细的KMP算法上面提到的文章里讲的非常详细,就不从头说了。这里讲一讲我之前一直困惑现在理解了的点。

对于KMP算法,核心的地方就是求next数组,而求next数组中比较难理解的地方就是当当前位置的字符和目标字符不匹配的时候。对于字符串s,已经有p[0]p[i-1],且p[i-1]=j,求p[i]pnext数组,其中p[k]表示从0k位置为止公共前缀后缀的长度,例如:abacaba,公共前缀后缀长度是3,当p[k]=m则表示s.substring(0,m)s.substring(k-m+1,k+1)是相等的):

  1. s[i]=s[j],也就是当前字符延续了之前的公共前缀后缀,那么p[i]=p[i-1]+1即可
  2. s[i]!=s[j],即s.substring(0,j)s.substring(i-j+1,i+1)是不匹配的,但是仍然可能存在s.substring(0,x)s.substring(i-x+1,i+1),这一点就是我以前最不能理解的地方,这次结题的经历加深了我这部分的理解。

到目前位置,期望i位置的最长公共前缀后缀为j+1的期望已经失败,那我是否可以期望下缩短长度之后能有匹配的公共前缀后缀呢?答案是肯定的,因为对于位置i-1来说,其实是可能存在多个公共前缀后缀的,只是p[i-1]只记录其中最长的,那么次长的是多少呢,答案就在p[j-1]里。对于位置i-1来说,已知0j-1的子串和i-j+1i-1子串是相等的,而对于位置j-1来说,从0p[j-1]-1的子串和从j-p[j-1]j-1的子串是相同的,更进一步和i-p[j-1]i-1的子串也是相同的,那如果现在比较一下ip[j-1]是否相等同样可以求出最长公共前缀后缀的值(因为p中记录是到每个位置为止的最长公共前缀后缀,所以这样每次递推下去每次得到都是当前可能的最长公共前缀后缀)。

梳理一下,就是对于位置i-1而言,公共前缀后缀的长度依次为:p[i-1],p[p[i-1]-1],p[p[p[i-1]-1]-1],……。在此基础上,对于位置i而言,只要比对某几个特定的位置,看s[i]是否能符合条件(即是否和当前公共前缀后缀后的第一个字符相等)就能求得p[i]的值。当然,如果比对某个位置的时候p[x]已经为0,那么就可以马上结束比较跳出循环,然后只要和首字母比对下就行了(因为这种情况说明可能的公共前缀后缀都已经被比对完了,s[i]依然不符合条件,那么只能从头开始了)。

应用了KMP之后的实现代码:

public class Solution {
    public String shortestPalindrome(String s) {
        StringBuilder builder = new StringBuilder(s);
        return builder.reverse().substring(0, s.length() - getCommonLength(s)) + s;
    }

    private int getCommonLength(String str) {
        StringBuilder builder = new StringBuilder(str);
        String rev = new StringBuilder(str).reverse().toString();
        builder.append("#").append(rev);
        int[] p = new int[builder.length()];
        for (int i = 1; i < p.length; i++) {
            int j = p[i - 1];
            while (j > 0 && builder.charAt(i) != builder.charAt(j)) j = p[j - 1];
            p[i] = j == 0 ? (builder.charAt(i) == builder.charAt(0) ? 1 : 0) : j + 1;
        }
        return p[p.length - 1];
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容