第六章 物化视图

  1. 物化视图把查询的结果根据相应的引擎存入到了磁盘或内存中,对数据重新进行了组织,可以理解物化视图是完全的一张新表。需要注意的是,物化视图的数据并不跟着数据源数据的改变触发改变。
  2. 个人的一些思考:物化视图也好、Projection也好,本质上是基于一个表的数据的重新排序、聚合、持久化,形成一个新的子表,不同之处这个子表有一个数据库层面上的父亲。这种在数据库层面建立的血缘关系不是特别友好,增加了概念的复杂度。
  3. 基本语法
    也是 create 语法,会创建一个隐藏的目标表来保存视图数据。也可以 TO 表名,保存到一张显式的表。没有加 TO 表名,表名默认就是 .inner.物化视图名
CREATE [MATERIALIZED] VIEW [IF NOT EXISTS] [db.]table_name [TO[db.]name] 
[ENGINE = engine] [POPULATE] AS SELECT ...
  1. 创建物化视图的限制
    4.1 必须指定物化视图的 engine 用于数据存储
    4.2 TO [db].[table]语法的时候,不得使用 POPULATE。
    4.3 查询语句(select)可以包含下面的子句: DISTINCT, GROUP BY, ORDER BY, LIMIT…
    4.4 物化视图的 alter 操作有些限制,操作起来不大方便。
    4.5 若物化视图的定义使用了 TO [db.]name 子语句,则可以将目标表的视图 卸载DETACH 再装载 ATTACH
  2. 物化视图的数据更新
    5.1 物化视图创建好之后,若源表被写入新数据则物化视图也会同步更新
    5.2 POPULATE 关键字决定了物化视图的更新策略:
  • 若有 POPULATE 则在创建视图的过程会将源表已经存在的数据一并导入,类似于create table ... as
  • 若无 POPULATE 则物化视图在创建之后没有数据,只会在创建只有同步之后写入源表的数据
  • clickhouse 官方并不推荐使用 POPULATE,因为在创建物化视图的过程中同时写入的数据不能被插入物化视图。
  • 物化视图不支持同步删除,若源表的数据不存在(删除了)则物化视图的数据仍然保留
  • 物化视图是一种特殊的数据表,可以用 show tables 查看
  • 物化视图数据的删除:
  • 物化视图的删除:
  1. 案例操作
    6.1 建表
# 建表语句
CREATE TABLE hits_test
(
  EventDate Date, 
  CounterID UInt32, 
  UserID UInt64, 
  URL String, 
  Income UInt8
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192

6.2 导入一些数据

INSERT INTO hits_test 
 SELECT 
 EventDate,
 CounterID,
 UserID,
 URL,
 Income 
FROM hits_v1 
limit 10000;

6.3 创建物化视图

#建表语句
CREATE MATERIALIZED VIEW hits_mv 
ENGINE=SummingMergeTree
PARTITION BY toYYYYMM(EventDate) ORDER BY (EventDate, intHash32(UserID)) 
AS SELECT
UserID,
EventDate,
count(URL) as ClickCount,
sum(Income) AS IncomeSum
FROM hits_test
WHERE EventDate >= '2014-03-20' #设置更新点,该时间点之前的数据可以另外通过
 #insert into select …… 的方式进行插入
GROUP BY UserID,EventDate;
##或者可以用下列语法,表 A 可以是一张 mergetree 表
CREATE MATERIALIZED VIEW 物化视图名 TO 表 A
AS SELECT FROM 表 B;
#不建议添加 populate 关键字进行全量更新

6.4 导入增量数据

#导入增量数据
INSERT INTO hits_test 
SELECT 
 EventDate,
 CounterID,
 UserID,
 URL,
 Income 
FROM hits_v1 
WHERE EventDate >= '2014-03-23' 
limit 10;
#查询物化视图
SELECT * FROM hits_mv;

6.5 导入历史数据

#导入增量数据
INSERT INTO hits_mv
SELECT
 UserID,
 EventDate,
 count(URL) as ClickCount,
 sum(Income) AS IncomeSum
FROM hits_test
WHERE EventDate = '2014-03-20'
GROUP BY UserID,EventDate
#查询物化视图
SELECT * FROM hits_mv;
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容