ACL Management for Spark SQL

ACL Management for Spark SQL

Three primary modes for Spark SQL authorization are available with spark-authorizer:

Storage-Based Authorization

Enabling Storage Based Authorization in the Hive Metastore Server uses the HDFS permissions to act as the main source for verification and allows for consistent data and metadata authorization policy. This allows control over metadata access by verifying if the user has permission to access corresponding directories on the HDFS. Similar with HiveServer2, files and directories will be tanslated into hive metadata objects, such as dbs, tables, partitions, and be protected from end user's queries through Spark SQL as a service like Kyuubi, livy etc.

Storage-Based Authorization offers users with Database, Table and Partition-level coarse-gained access control.

Please refer to the Storage-Based Authorization Guide in the online documentation for an overview on how to configure Storage-Based Authorization for Spark SQL.

SQL-Standard Based Authorization

Enabling SQL-Standard Based Authorization gives users more fine-gained control over access comparing with Storage Based Authorization. Besides of the ability of Storage Based Authorization, SQL-Standard Based Authorization can improve it to Views and Column-level. Unfortunately, Spark SQL does not support grant/revoke statements which controls access, this might be done only through the HiveServer2. But it's gratifying that spark-authorizer makes Spark SQL be able to understand this fine-grain access control granted or revoked by Hive.

For Spark SQL Client users who can directly acess HDFS, the SQL-Standard Based Authorization can be easily bypassed.

With Kyuubi, the SQL-Standard Based Authorization is guaranteed for the security configurations, metadata, and storage information is preserved from end users.

Please refer to the SQL-Standard Based Authorization Guide in the online documentation for an overview on how to configure SQL-Standard Based Authorization for Spark SQL.

Ranger Security Support

Apache Ranger is a framework to enable, monitor and manage comprehensive data security across the Hadoop platform but end before Spark or Spark SQL. The spark-authorizer enables Spark SQL with control access ability reusing Ranger Plugin for Hive MetaStore. Apache Ranger makes the scope of existing SQL-Standard Based Authorization expanded but without supporting Spark SQL. And spark-authorizer sticks them together.

Please refer to the Spark SQL Ranger Security Support Guide in the online documentation for an overview on how to configure Ranger for Spark SQL.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容

  • PLEASE READ THE FOLLOWING APPLE DEVELOPER PROGRAM LICENSE...
    念念不忘的阅读 13,432评论 5 6
  • 我经常能够看见,与很多人喜欢默默付出,帮助别人做了很多事却不声不响。就像很多电视剧里男二的桥段,总是默默守护着女生...
    247J阅读 663评论 0 0
  • 以一个业余爱好文化艺术之人的眼光来打量武汉这座城市,你会从心底里生出一种对这座城市的轻视,感觉它竟然长得四不象,只...
    芭比和剑客阅读 247评论 0 1
  • 第三方分享,今天聊的是友盟分享,官方链接:http://www.umeng.com/social 官方的SDK都能...
    软工官博阅读 952评论 0 0
  • 早上,上班前,这个店吃早餐,门都没有,冷死了。 孩爹的车过来的,他说饿了,吃了早餐再回家,我也还没吃,我平时都是包...
    喊哈是哈阅读 150评论 0 0