seaborn高级应用

一、单变量分析绘图

1、在seaborn里最常用的观察单变量分布的函数是distplot(),默认地,这个函数会绘制一个直方图,并拟合一个核密度估计。

sns.distplot(data, bins, hist = True, kde = True)

2、data参数记录绘图所用的数据,而bins参数在绘制直方图时可以进行设置,用于设置分组的个数,默认值时,会根据数据的情况自动分为n个组,若是想指定分组的个数,可以设置该参数,然后计算我们可以增加其数量,来看到更为详细的信息。

3、hist和kde参数用于调节是否显示直方图及核密度估计图,默认hist、kde均为True,表示两者都显示。我们可以通过修改参数为False选择是否将其中之一去掉。

4、如果我们只想要显示概率密度曲线,不想显示柱状图,我们也可以使用sns.kdeplot()函数绘制数据的概率密度曲线图。

sns.kdeplot(data1, data2, shade = False)

二、绘制双变量联合分布图

1、在Seaborn中绘制连续数值型双变量我们使用sns.jointplot():

seaborn.jointplot(x, y, data=None, kind='scatter')

2、x、y:分别记录x轴和y轴的数据名称。

3、data:数据集,data的数据类型为DataFrame。

4、kind:用于设置图像的类型,可选的类型有:'scatter' | 'reg' | 'resid' | 'kde' | 'hex',分别表示散点图、回归图、残差图、核密度图和蜂巢图。

5、参数x_jitter,这个参数可以设置size值的偏离范围,这里size代表用餐人数,那么我们设置的x_jitter应该在0-1之间,我们设置为0.3,散点图显得更易观察。

sdata = data[['size','tip']]

ns.jointplot(x='size', y='tip', data=data,kind='reg',x_jitter=0.3)

三、多变量关系分布图

1、使用seaborn中的pairplot()方法,就可以绘制连续数值型多变量关系分布图。

sns.pairplot( data, hue, vars, kind, diag_kind)

2、data表示绘图所用到的数据集

3、hue参数表示按照某个字段进行分类

4、vars参数可以用于筛选绘制图像的变量,用列表的形式传入列名称

5、kind参数用于设置变量间图像的类型,可以选择'scatter'散点图,或者 'reg'回归图

6、diag_kind用于设置对角线上的图像类型,可以选择'hist'直方图, 或者'kde'核密度图

7、也可以使用pairplot函数绘制两个变量的关系分布图。

使用kind参数设置两个变量间使用回归图,使用diag_kind参数设置对角线上的图像类型为密度图。

sns.pairplot(data, hue='species',vars=['sepal_length', 'sepal_width'],kind='reg', diag_kind='kde')

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350