Java原子变量详解

实现全局自增id最简单有效的方式是什么? java.util.concurrent.atomic 包定义了一些常见类型的原子变量。这些原子变量为我们提供了一种操作单一变量无锁( lock-free )的线程安全( thread-safe )方式。实际上该包下面的类为我们提供了类似 volatile 变量的特性,同时还提供了诸如 boolean compareAndSet(expectedValue, updateValue) 的功能。不使用锁实现线程安全听起来似乎很不可思议,这其实是通过CPU的compare and swap指令实现的,由于硬件指令支持当然不需要加锁了。

先不去讨论这些细节,我们来看一下原子变量的用法。一个典型的用法是可以使用原子变量轻松实现全局自增id,就像下面这样:

// 线程安全的序列id生成器
class Sequencer {
private final AtomicLong sequenceNumber = new AtomicLong(0);
publiclongnext() {
return sequenceNumber.getAndIncrement();
}
}
上述代码利用AtomicLong创建了一个Sequencer类,不断调用该类的next()方法就可以得到线程安全的自增id,用起来非常简单直观。下面我们给出每种原子变量类型的用法说明。

AtomicInteger and AtomicLong

AtomicInteger 和 AtomicLong 分别代表原子类型的整型和长整型,这两个类提供十分相似的功能,仅仅是位宽不同。如上例所示,原子整型可用于多线程下全局自增id,除此之外还提供了原子 比较-赋值 等操作,诸如 compareAndSet(expect, update) , decrementAndGet() , getAndDecrement() , getAndSet(newValue) 等等,更全面的接口描述可参考JDK文档。需要提醒的是这些函数都是通过原子CPU指令实现,执行效率较高。

原子整型看似跟普通整型( Integer, Long )类型相似,但不能使用原子整型替代普通整型,因为原子整型是可变的,而普通整型不可变。由于这个原因,使用原子整型作为Map的key并不是个好主意。

你可能会想当然的以为应该有 AtomicFloat 和 AtomicDouble ,遗憾的是类库里并没有这两个类型, AtomicByte 和 AtomicShort 也没有。如果需要替代方案是使用 AtomicInteger 和 AtomicLong 。可通过 Float.floatToRawIntBits(float) 和 Float.intBitsToFloat(int) 将Float存储到 AtomicInteger 中,类似的Double类型也可以存储到 AtomicLong 中。

AtomicReference

AtomicReference 用于存放一个可以原子更新的对象引用。该类包含 get() , set() , compareAndSet() , getAndSet() 等原子方法来获取和更新其代表的对象引用。

AtomicXXXArray

atomic包下面有三种原子数组: AtomicIntegerArray , AtomicLongArra , AtomicReferenceArray ,分别代表整型、长整型和引用类型的原子数组。原子数组使得我们可以线程安全的方式去修改和访问数组里的单个元素。简单示例如下:

// 原子数组示例
AtomicLongArray longArray = new AtomicLongArray(10);// 创建长度为10的原子数组
longArray.set(1, 100);
long v = longArray.getAndIncrement(1);

AtomicReferenceArray<String> referenceArray = new AtomicReferenceArray<>(16);
referenceArray.set(3, "love");
referenceArray.compareAndSet(3, "love", "you");
简单来说原子数组就是一种支持线程安全的数组,仍然具有数组“定长”的性质,如果访问元素超过了数组的长度,将会抛出 IndexOutOfBoundsException 。你可能已经想到了,可以使用线程安全的容器来避免容量不足,我们会在后续章节介绍。

什么是线程安全?

线程安全是指多线程访问是时,无论线程的调度策略是什么,程序能够正确的执行。导致线程不安全的一个原因是状态不一致,如果线程A修改了某个共享变量(比如给id++),而线程B没有及时知道,就会导致B在错误的状态上执行,结果的正确性也就无法保证。原子变量为我们提供了一种保证单个状态一致的简单方式,一个线程修改了原子变量,另外的线程立即就能看到,这比通过锁实现的方式效率要高;如果要同时保证多个变量状态一致,就只能使用锁了。

欢迎加入学习交流群569772982,大家一起学习交流。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容