相似图片检测:感知哈希算法之dHash的Python实现

某些情况下,我们需要检测图片之间的相似性,进行我们需要的处理:删除同一张图片、标记盗版等。
如何判断是同一张图片呢?最简单的方法是使用加密哈希(例如MD5, SHA-1)判断。但是局限性非常大。例如一个txt文档,其MD5值是根据这个txt的二进制数据计算的,如果是这个txt文档的完全复制版,那他们的MD5值是完全相同的。但是,一旦改变副本的内容,哪怕只是副本的缩进格式,其MD5也会天差地别。因此加密哈希只能用于判断两个完全一致、未经修改的文件,如果是一张经过调色或者缩放的图片,根本无法判断其与另一张图片是否为同一张图片。
那么如何判断一张被PS过的图片是否与另一张图片本质上相同呢?比较简单、易用的解决方案是采用感知哈希算法(Perceptual Hash Algorithm)。

感知哈希算法是一类算法的总称,包括aHash、pHash、dHash。顾名思义,感知哈希不是以严格的方式计算Hash值,而是以更加相对的方式计算哈希值,因为“相似”与否,就是一种相对的判定。

  • aHash:平均值哈希。速度比较快,但是常常不太精确。
  • pHash:感知哈希。精确度比较高,但是速度方面较差一些。
  • dHash:差异值哈希。Amazing!精确度较高,且速度也非常快。因此我就选择了dHash作为我图片判重的算法。

一、 相似图片检测步骤:

  1. 分别计算两张图片的dHash值
  2. 通过dHash值计算两张图片的汉明距离(Hamming Distance),通过汉明距离的大小,判断两张图片的相似程度。

二、dHash计算

需要计算dHash值的图片
Step1. 缩放图片

如果我们要计算上图的dHash值,第一步是把它缩放到足够小。为什么需要缩放呢?因为原图的分辨率一般都非常高。一张 200*200 的图片,就有整整4万个像素点,每一个像素点都保存着一个RGB值,4万个RGB,是相当庞大的信息量,非常多的细节需要处理。因此,我们需要把图片缩放到非常小,隐藏它的细节部分,只见森林,不见树木。建议缩放为9*8,虽然可以缩放为任意大小,但是这个值是相对合理的。而且宽度为9,有利于我们转换为hash值,往下面看,你就明白了。

resize_width = 9
resize_height = 8
# 1. resize to (9,8)
smaller_image = image.resize((resize_width, resize_height), Image.ANTIALIAS)

(感谢评论区隔壁万能的小黑同学,建议在image.resize中加上Image.ANTIALIAS参数,加上此参数将会对所有可以影响输出像素的输入像素进行高质量的重采样滤波)

缩放为9*8分辨率后

Step2. 灰度化

dHash全名为差异值hash,通过计算相邻像素之间的颜色强度差异得出。我们缩放后的图片,细节已经被隐藏,信息量已经变少。但是还不够,因为它是彩色的,由RGB值组成。白色表示为(255,255,255),黑色表示为(0,0,0),值越大颜色越亮,越小则越暗。每种颜色都由3个数值组成,也就是红、绿、蓝的值 。如果直接使用RGB值对比颜色强度差异,相当复杂,因此我们转化为灰度值——只由一个0到255的整数表示灰度。这样的话就将三维的比较简化为了一维比较。

# 2. 灰度化 Grayscale
grayscale_image = smaller_image.convert("L")
灰度化后
Step3. 差异计算

差异值是通过计算每行相邻像素的强度对比得出的。我们的图片为9*8的分辨率,那么就有8行,每行9个像素。差异值是每行分别计算的,也就是第二行的第一个像素不会与第一行的任何像素比较。每一行有9个像素,那么就会产生8个差异值,这也是为何我们选择9作为宽度,因为8bit刚好可以组成一个byte,方便转换为16进制值。
如果前一个像素的颜色强度大于第二个像素,那么差异值就设置为True(也就是1),如果不大于第二个像素,就设置为False(也就是0)。

# 3. 比较相邻像素
pixels = list(grayscale_image.getdata())
difference = []
for row in range(resize_height):    
    row_start_index = row * resize_width    
    for col in range(resize_width - 1):        
        left_pixel_index = row_start_index + col
        difference.append(pixels[left_pixel_index] > pixels[left_pixel_index + 1])
Step4. 转换为hash值

我们将差异值数组中每一个值看做一个bit,每8个bit组成为一个16进制值,将16进制值连接起来转换为字符串,就得出了最后的dHash值。

# 转化为16进制(每个差值为一个bit,每8bit转为一个16进制)
decimal_value = 0
hash_string = ""
for index, value in enumerate(difference):    
    if value:  # value为0, 不用计算, 程序优化        
        decimal_value += value * (2 ** (index % 8))   
    if index % 8 == 7:  # 每8位的结束        
        hash_string += str(hex(decimal_value)[2:].rjust(2, "0"))  # 不足2位以0填充。0xf=>0x0f        
        decimal_value = 0

三、 计算汉明距离(Hamming Distance)

汉明距离这个概念不止运用于图片对比领域,也被使用于众多领域,具体的介绍可以参见Wikipedia。
汉明距离表示将A修改成为B,需要多少个步骤。比如字符串“abc”与“ab3”,汉明距离为1,因为只需要修改“c”为“3”即可。
dHash中的汉明距离是通过计算差异值的修改位数。我们的差异值是用0、1表示的,可以看做二进制。二进制0110与1111的汉明距离为2。
我们将两张图片的dHash值转换为二进制difference,并取异或。计算异或结果的“1”的位数,也就是不相同的位数,这就是汉明距离。

difference = (int(dhash1, 16)) ^ (int(dhash2, 16))
return bin(difference).count("1")

如果传入的参数不是两张图的dHash值,而是直接比较两张图片,那么不需要生成dHash值,直接用Step3中的difference数组,统计不相同的位数,就是汉明距离。

hamming_distance = 0
for index, img1_pix in enumerate(image1_difference):   
    img2_pix = image2_difference[index]    
    if img1_pix != img2_pix:        
        hamming_distance += 1

一般来说,汉明距离小于5,基本就是同一张图片。大家可以根据自己的实际情况,判断汉明距离临界值为多少。

Github:

https://github.com/hjaurum/DHash

参考文档:
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容

  • 2011年,Google把“相似图片搜索”正式放上了首页。你可以用一张图片,搜索互联网上所有与它相似的图片。点击搜...
    余平的余_余平的平阅读 1,940评论 0 7
  • 昨天有幸参加了ArchSummit北京2016全球架构师峰会,其中对阿里巴巴技术专家引商(花名)的《拥抱创新-聚划...
    zyl04401阅读 1,523评论 1 6
  • 感知哈希算法是一种匹配大量图片的方法,速度很快,也很容易理解,它大致上的思想就是用一个字符串来表征一副图像,然后比...
    MisakaMikotoSAM阅读 2,485评论 0 3
  • 春雨有寒意,冷暖不自知。 深眠不愿醒,万物静发生。 我心在彷徨,她心总忧伤。 谁言柔弱好,凡事独坚强。 归来归来兮...
    钢鹰阅读 339评论 0 0
  • 《漫步人生》时间管理系统拥有重大且多重的深刻意义 我将在未来的12-24月中更新一套自己时间管理系统,它被称之为《...
    山羊终局阅读 286评论 0 2