Reading Note: S^3FD: Single Shot Scale-invariant Face Detector

TITLE: $S^3FD$: Single Shot Scale-invariant Face Detector

AUTHOR: Shifeng Zhang, Xiangyu Zhu, Zhen Lei, Hailin Shi, Xiaobo Wang, Stan Z. Li

ASSOCIATION: Chinese Academy of Sciences

FROM: arXiv:1708.05237

CONTRIBUTION

  1. Proposing a scale-equitable face detection framework with a wide range of anchor-associated layers and a series of reasonable anchor scales so as to handle dif- ferent scales of faces well.
  2. Presenting a scale compensation anchor matching strategy to improve the recall rate of small faces.
  3. Introducing a max-out background label to reduce the high false positive rate of small faces.
  4. Achieving state-of-the-art results on AFW, PASCAL face, FDDB and WIDER FACE with real-time speed.

METHOD

There are mainly three reasons that why the performance of anchor-based detetors drop dramatically as the objects becoming smaller:

  1. Biased Framework. Firstly, the stride size of the lowest anchor-associated layer is too large, thus few features are reliable for small faces. Secondly, anchor scale mismatches receptive field and both are too large to fit small faces.
  2. Anchor Matching Strategy. Anchor scales are discrete but face scale is continuous. Those faces whose scale distribute away from anchor scales can not match enough anchors, such as tiny and outer face.
  3. Background from Small Anchors. Small anchors lead to sharp increase in the number of negative anchors on the background, bringing about many false positive faces.

The architecture of Single Shot Scale-invariant Face Detector is shown in the following figure.

Framework

{: .center-image .image-width-640}

Scale-equitable framework

Constructing Architecture

  • Base Convolutional Layers: layers of VGG16 from conv1_1 to pool5 are kept.
  • Extra Convolutional Layers: fc6 and fc7 of VGG16 are converted to convolutional layers. Then extra convolutional layers are added, which is similar to SSD.
  • Detection Convolutional Layers: conv3_3, conv4_3, conv5_3, conv_fc7, conv6_2 and conv7_2 are selected as the detection layers.
  • Normalization Layers: L2 normalization is applied to conv3_3, conv4_3 and conv5_3 to rescale their norm to 10, 8 and 5 respectively. The scales are then learned during the back propagation.
  • Predicted Convolutional Layers: For each anchor, 4 offsets relative to its coordinates and $N_{s}$ scores for classification, where $N_s=N_m+1$ ($N_m$ is the maxout background label) for conv3_3 detection layer and $N_s=2$ for other detection layers.
  • Multi-task Loss Layer: Softmax loss for classification and smooth L1 loss for regression.

Designing scales for anchors

  • Effective receptive field: the anchor should be significantly smaller than theoretical receptive field in order to match the effective receptive field.
  • Equal-proportion interval principle: the scales of the anchors are 4 times its interval, which guarantees that different scales of anchor have the same density on the image, so that various scales face can approximately match the same number of anchors.

Scale compensaton anchor matching strategy

To solve the problems that 1) the average number of matched anchors is about 3 which is not enough to recall faces with high scores; 2) the number of matched anchors is highly related to the anchor scales, a scale compensation anchor matching strategy is proposed. There are two stages:

  • Stage One: decrease threshold from 0.5 to 0.35 in order to increase the average number of matched anchors.
  • Stage Two: firstly pick out anchors whose jaccard overlap with tiny or outer faces are higher than 0.1, then sorting them to select top-N as matched anchors. N is set as the average number from stage one.

Max-out background label

For conv3_3 detection layer, a max-out background label is applied. For each of the smallest anchors, $N_m$ scores are predicted for background label and then choose the highest as its final score.

Training

  1. Training dataset and data augmentation, including color distort, random crop and horizontal flip.
  2. Loss function is a multi-task loss defined in RPN.
  3. Hard negative mining.

The experiment result on WIDER FACE is illustrated in the following figure.

Experiment

{: .center-image .image-width-640}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,312评论 0 10
  • 木夏喜欢安静,人多的时候一定窝在角落里。可是她也已经到了适婚年龄,那些追问她是否有结婚对象的七大姑八大姨比她母亲还...
    Sophiamee阅读 357评论 0 0
  • 拆开 盒中的糖 融化了稚嫩的惊慌 擦干 镜上的雾 映照了年少的轻狂 抓起 盘中的沙 流逝了年华的芬芳 拍掉 身上的...
    勿叹阅读 309评论 0 0
  • 短篇小说·蛤蟆劫 作者:焱公子 旧时滇东百齐乡有个书生,姓白名青云,看名字便知,这老白家对此子寄予厚望,盼他自小便...
    简黛玉阅读 4,006评论 9 35