1.基础介绍
- sharing-jdbc是一个在客户端的数据源层面实现分库分表的中间件,对应分析源码首先要找到代码执行的入口,对于一个数据库操作入口当然是Statement的相关接口,所以我们应该抛开各种ORM框架,用原始的Statement来分析sharding-jdbc源码
- Statement是jdbc中用来执行静态sql,并得到返回的接口的抽象接口,本文主要介绍在sharding-jdbc中来实现Statement的实现类:ShardingStatement
2.总体概括
以下为官方网站提供的流程图
3.看源码
- 调用,基础的调用方式回顾,此时的Statement就是ShardingStatement
String sql="insert into t_order (name) VALUES (\"我是4\")";
Connection connection=dataSource.getConnection();
// ShardingStatement
Statement statement=connection.createStatement();
statement.executeUpdate(sql);
- ShardingStatement.executeUpdate;执行更新的sql;重点的方法为sqlRoute,所以后续会主要分析这个方法
@Override
public int executeUpdate(final String sql) throws SQLException {
try {
//这一步是调用statementExecutor.clear方法,目的是清空上次执行的语句,参数,结果
clearPrevious();
//这个方法就实现了,SQL解析,查询优化,SQL路由,SQL改写任务
sqlRoute(sql);
//赋值到StatementExecutor(一个用来执行真正sql的包装类)
initStatementExecutor();
//对多个库进行真正的更新操作
return statementExecutor.executeUpdate();
} finally {
refreshTableMetaData();
currentResultSet = null;
}
}
- ShardingStatement.sqlRoute;SQL解析,查询优化,SQL路由,SQL改写
private void sqlRoute(final String sql) {
//获取传递参数的上下文对象
ShardingContext shardingContext = connection.getShardingContext();
//StatementRoutingEngine;用来封装执行分库分表逻辑和主从逻辑,此时调用此类的route方法
routeResult = new StatementRoutingEngine(shardingContext.getShardingRule(),
shardingContext.getMetaData().getTable(), shardingContext.getDatabaseType(), shardingContext.isShowSQL(), shardingContext.getMetaData().getDataSource()).route(sql);
}
- StatementRoutingEngine.route:里面就是调用了ShardingRouter.route方法,并将结果传给ShardingMasterSlaveRouter.route方法
public SQLRouteResult route(final String logicSQL) {
//解析SQL转化为SQLStatement,表示这个SQL的对象类
SQLStatement sqlStatement = shardingRouter.parse(logicSQL, false);
//首先调用ShardingRouter.route,得到SQLRouteResult:逻辑SQL经过优化,路由,改写后的结果对象,如下图
return masterSlaveRouter.route(shardingRouter.route(logicSQL, Collections.emptyList(), sqlStatement));
}
SQLRouteResult对象内容:
- ParsingSQLRouter.parse:解析逻辑sql,形成SQL执行对象
public SQLStatement parse(final boolean useCache) {
// SQL解析缓存,有则返回
Optional<SQLStatement> cachedSQLStatement = getSQLStatementFromCache(useCache);
if (cachedSQLStatement.isPresent()) {
return cachedSQLStatement.get();
}
//词法解析器
LexerEngine lexerEngine = LexerEngineFactory.newInstance(dbType, sql);
lexerEngine.nextToken();
//语法解析结果
SQLStatement result = SQLParserFactory.newInstance(dbType, lexerEngine.getCurrentToken().getType(), shardingRule, lexerEngine, shardingTableMetaData).parse();
//添加缓存
if (useCache) {
ParsingResultCache.getInstance().put(sql, result);
}
return result;
}
- ParsingSQLRouter.route(final String logicSQL, final List<Object> parameters, final SQLStatement sqlStatement):执行查询优化,SQL路由,SQL改写,当时insert并且没有手动写入id时,则此时会生成分布式ID
@Override
public SQLRouteResult route(final String logicSQL, final List<Object> parameters, final SQLStatement sqlStatement) {
//判断是否是insert,如果是则生成分布式主键ID
GeneratedKey generatedKey = null;
if (sqlStatement instanceof InsertStatement) {
generatedKey = getGenerateKey(shardingRule, (InsertStatement) sqlStatement, parameters);
}
//初始化返回结果
SQLRouteResult result = new SQLRouteResult(sqlStatement, generatedKey);
//调用优化引擎优化SQL
ShardingConditions shardingConditions = OptimizeEngineFactory.newInstance(shardingRule, sqlStatement, parameters, generatedKey).optimize();
//赋值分布式主键
if (null != generatedKey) {
setGeneratedKeys(result, generatedKey);
}
//根据CRUD调用不同的路由引擎获取应该操作的物理库和物理表,形成路由结果,后续会分析该方法
RoutingResult routingResult = route(sqlStatement, shardingConditions);
//初始化重写引擎
SQLRewriteEngine rewriteEngine = new SQLRewriteEngine(shardingRule, logicSQL, databaseType, sqlStatement, shardingConditions, parameters);
//判断是否路由到一个物理库中
boolean isSingleRouting = routingResult.isSingleRouting();
//处理在路由到多个物理库时处理limit语法
if (sqlStatement instanceof SelectStatement && null != ((SelectStatement) sqlStatement).getLimit()) {
processLimit(parameters, (SelectStatement) sqlStatement, isSingleRouting);
}
//按照路由结果重写SQL,生成物理库可执行的SQL
SQLBuilder sqlBuilder = rewriteEngine.rewrite(!isSingleRouting);
for (TableUnit each : routingResult.getTableUnits().getTableUnits()) {
result.getRouteUnits().add(new RouteUnit(each.getDataSourceName(), rewriteEngine.generateSQL(each, sqlBuilder, shardingDataSourceMetaData)));
}
//是否打印最终的SQL
if (showSQL) {
SQLLogger.logSQL(logicSQL, sqlStatement, result.getRouteUnits());
}
return result;
}
7.ParsingSQLRouter.route(final SQLStatement sqlStatement, final ShardingConditions shardingConditions):调用分库分表策略生成分库分表结果
private RoutingResult route(final SQLStatement sqlStatement, final ShardingConditions shardingConditions) {
Collection<String> tableNames = sqlStatement.getTables().getTableNames();
RoutingEngine routingEngine;
if (sqlStatement instanceof UseStatement) {
routingEngine = new IgnoreRoutingEngine();
} else if (sqlStatement instanceof DDLStatement || (sqlStatement instanceof DCLStatement && ((DCLStatement) sqlStatement).isGrantForSingleTable())) {
routingEngine = new TableBroadcastRoutingEngine(shardingRule, sqlStatement);
} else if (sqlStatement instanceof ShowDatabasesStatement || sqlStatement instanceof ShowTablesStatement) {
routingEngine = new DatabaseBroadcastRoutingEngine(shardingRule);
} else if (sqlStatement instanceof DCLStatement) {
routingEngine = new InstanceBroadcastRoutingEngine(shardingRule, shardingDataSourceMetaData);
} else if (shardingConditions.isAlwaysFalse()) {
routingEngine = new UnicastRoutingEngine(shardingRule, tableNames);
} else if (sqlStatement instanceof DALStatement) {
routingEngine = new UnicastRoutingEngine(shardingRule, tableNames);
} else if (tableNames.isEmpty() && sqlStatement instanceof SelectStatement) {
routingEngine = new UnicastRoutingEngine(shardingRule, tableNames);
} else if (tableNames.isEmpty()) {
routingEngine = new DatabaseBroadcastRoutingEngine(shardingRule);
// CRUD语句会进入下面其中一个
} else if (1 == tableNames.size() || shardingRule.isAllBindingTables(tableNames) || shardingRule.isAllInDefaultDataSource(tableNames)) {
routingEngine = new StandardRoutingEngine(shardingRule, tableNames.iterator().next(), shardingConditions);
} else {
// TODO config for cartesian set
routingEngine = new ComplexRoutingEngine(shardingRule, tableNames, shardingConditions);
}
return routingEngine.route();
}
StandardRoutingEngine.route:查看进去会看到,进入到如下源码
private Collection<DataNode> routeByShardingConditions(final TableRule tableRule) {
Collection<DataNode> result = new LinkedList<>();
if (shardingConditions.getShardingConditions().isEmpty()) {
result.addAll(route(tableRule, Collections.<ShardingValue>emptyList(), Collections.<ShardingValue>emptyList()));
} else {
//获取配置的分库策略类,里面会调用我们的比如根据Id做hash的分库算法等等
ShardingStrategy dataBaseShardingStrategy = shardingRule.getDatabaseShardingStrategy(tableRule);
ShardingStrategy tableShardingStrategy = shardingRule.getTableShardingStrategy(tableRule);
for (ShardingCondition each : shardingConditions.getShardingConditions()) {
List<ShardingValue> databaseShardingValues = isGettingShardingValuesFromHint(dataBaseShardingStrategy)
? getDatabaseShardingValuesFromHint() : getShardingValues(dataBaseShardingStrategy.getShardingColumns(), each);
List<ShardingValue> tableShardingValues = isGettingShardingValuesFromHint(tableShardingStrategy)
? getTableShardingValuesFromHint() : getShardingValues(tableShardingStrategy.getShardingColumns(), each);
Collection<DataNode> dataNodes = route(tableRule, databaseShardingValues, tableShardingValues);
reviseShardingConditions(each, dataNodes);
result.addAll(dataNodes);
}
}
return result;
}
4.总结
此文是一个简单的流程分析,希望帮助大家,对整个流程有个认知,为后续关键节点的实现有个整体的概览