这5个机器学习项目你不可错过!(附代码)

http://click.aliyun.com/m/1000006144/

以下是5个新的机器学习或与机器学习有关的项目,你可能还没有听说过,但是你不能错过!

本文将给大家介绍五个十分可怕但还鲜为人知的机器学习项目,囊括了一些潜在的机器学习的新想法。它们基本都是Python项目。我并不是故意这么选的,但毫无疑问有我自己偏好的影响在里面。以前我也介绍过许多各种各样的项目(R、Go、C++、Scala、Java等)。

我承诺很快会出一个R版的,并在评估这些项目时使用一些外部帮助(我得承认我不是很适应R生态)。

1. Live Loss Plot

不要闭着眼睛训练深度学习模型!要有耐心地去观察你的每一期训练!

这是一个由Piotr migdaet al提供的开源Python库,可以在Jupyter Notebook中为Keras、PyTorch和其他框架提供训练损失图像。当使用Keras时,Live Loss Plot是一个简单的回调函数。

代码如下:

fromlivelossplotimportPlotLossesKeras model.fit(X_train, Y_train,          epochs=10,          validation_data=(X_test, Y_test),          callbacks=[PlotLossesKeras()],          verbose=0)

2.Parfit

这个项目来自Jason Carpenter,他是旧金山大学数据科学硕士研究生,同时也是一名机器学习工程师。这个库可以将sklearn机器学习模型的拟合和评分情况并行化和可视化。一旦导入,您可以自由地使用bestFit()或其他函数。

代码如下:

fromparfitimportbestFit # Necessaryifyou wish to use bestFit # Necessaryifyou wish to run each step sequentiallyfromparfit.fitimport*fromparfit.scoreimport*fromparfit.plotimport*fromparfit.crossvalimport* grid = {'min_samples_leaf': [1,5,10,15,20,25],'max_features': ['sqrt','log2',0.5,0.6,0.7],'n_estimators': [60],'n_jobs': [-1],'random_state': [42]}paramGrid = ParameterGrid(grid) best_model, best_score, all_models, all_scores = bestFit(RandomForestClassifier(), paramGrid,                                          X_train, y_train, X_val, y_val, # nfolds=5[optional, insteadofvalidation set]                                          metric=roc_auc_score, greater_is_better=True,                                          scoreLabel='AUC') print(best_model, best_score)

3.Yellowbrick

Yellowbrick是以一个“促进机器学习模型选择的可视化分析和诊断工具”。更确切地,Yellowbrick是一套视觉诊断的可视化工具,它扩展了scikit-learn API,以引导人们选择模型。简单地说,Yellowbrick将scikit-learn与matplotlib结合在一起,这是scikit-learn文档的传统优点,但它可以为您的模型生成可视化!

请参阅Github上的示例以及更多详细的文档。

4.textgenrnn

textgenrnn为文本生成任务带来了额外的抽象层,旨在让您“轻松在任何文本数据集上仅用几行代码就训练自己的文本生成神经网络”。

该项目建立在Keras上,并拥有以下功能:

一种新的神经网络架构,利用新技术作为注意力加权和跳跃嵌入来加速训练模型和提高模型质量。

能够在字符级或文字级上训练并生成文本。

能够配置RNN大小,RNN的层数,以及是否使用双向RNN。

能够在任何输入文本文件上进行训练,甚至包括大型文件。

能够在GPU上训练模型,然后用它们来生成含有CPU的文本。

能够在GPU上使用强大的CuDNN实现RNN,与典型的LSTM实现相比,这将大大加快训练时间。

Textgenrnn很容易上手及运行。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容