数据科学和人工智能技术笔记 八、特征选择

八、特征选择

作者:Chris Albon

译者:飞龙

协议:CC BY-NC-SA 4.0

用于特征选取的 ANOVA F 值

如果特征是类别的,计算每个特征与目标向量之间的卡方(\chi^{2})统计量。 但是,如果特征是定量的,则计算每个特征与目标向量之间的 ANOVA F 值。

F 值得分检查当我们按照目标向量对数字特征进行分组时,每个组的均值是否显着不同。

# 加载库
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_classif

# 加载鸢尾花数据
iris = load_iris()

# 创建特征和标签
X = iris.data
y = iris.target

# 创建 SelectKBest 对象来选择两个带有最佳 ANOVA F 值的特征
fvalue_selector = SelectKBest(f_classif, k=2)

# 对 SelectKBest 对象应用特征和标签
X_kbest = fvalue_selector.fit_transform(X, y)

# 展示结果
print('Original number of features:', X.shape[1])
print('Reduced number of features:', X_kbest.shape[1])

'''
Original number of features: 4
Reduced number of features: 2 
'''

用于特征选择的卡方

image
# 加载库
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2

# 加载鸢尾花数据
iris = load_iris()

# 创建特征和目标
X = iris.data
y = iris.target

# 通过将数据转换为整数,转换为类别数据
X = X.astype(int)

# 选择两个卡方统计量最高的特征
chi2_selector = SelectKBest(chi2, k=2)
X_kbest = chi2_selector.fit_transform(X, y)

# 展示结果
print('Original number of features:', X.shape[1])
print('Reduced number of features:', X_kbest.shape[1])

'''
Original number of features: 4
Reduced number of features: 2 
'''

丢弃高度相关的特征

# 加载库
import pandas as pd
import numpy as np

# 创建特征矩阵,具有两个高度相关特征
X = np.array([[1, 1, 1],
              [2, 2, 0],
              [3, 3, 1],
              [4, 4, 0],
              [5, 5, 1],
              [6, 6, 0],
              [7, 7, 1],
              [8, 7, 0],
              [9, 7, 1]])

# 将特征矩阵转换为 DataFrame
df = pd.DataFrame(X)

# 查看数据帧
df
0 1 2
0 1 1 1
1 2 2 0
2 3 3 1
3 4 4 0
4 5 5 1
5 6 6 0
6 7 7 1
7 8 7 0
8 9 7 1
# 创建相关度矩阵
corr_matrix = df.corr().abs()

# 选择相关度矩阵的上三角
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))

# 寻找相关度大于 0.95 的特征列的索引
to_drop = [column for column in upper.columns if any(upper[column] > 0.95)]

# 丢弃特征
df.drop(df.columns[to_drop], axis=1)
0 2
0 1 1
1 2 0
2 3 1
3 4 0
4 5 1
5 6 0
6 7 1
7 8 0
8 9 1

递归特征消除

# 加载库
from sklearn.datasets import make_regression
from sklearn.feature_selection import RFECV
from sklearn import datasets, linear_model
import warnings

# 消除烦人但无害的警告
warnings.filterwarnings(action="ignore", module="scipy", message="^internal gelsd")

# 生成特征矩阵,目标向量和真实相关度
X, y = make_regression(n_samples = 10000,
                       n_features = 100,
                       n_informative = 2,
                       random_state = 1)

# 创建线性回归
ols = linear_model.LinearRegression()

# 创建递归特征消除器,按照 MSE 对特征评分
rfecv = RFECV(estimator=ols, step=1, scoring='neg_mean_squared_error')

# 拟合递归特征消除器
rfecv.fit(X, y)

# 递归特征消除
rfecv.transform(X)

'''
array([[ 0.00850799,  0.7031277 , -1.2416911 , -0.25651883, -0.10738769],
       [-1.07500204,  2.56148527,  0.5540926 , -0.72602474, -0.91773159],
       [ 1.37940721, -1.77039484, -0.59609275,  0.51485979, -1.17442094],
       ..., 
       [-0.80331656, -1.60648007,  0.37195763,  0.78006511, -0.20756972],
       [ 0.39508844, -1.34564911, -0.9639982 ,  1.7983361 , -0.61308782],
       [-0.55383035,  0.82880112,  0.24597833, -1.71411248,  0.3816852 ]]) 
'''

# 最佳特征数量
rfecv.n_features_

# 5 

方差阈值二元特征

from sklearn.feature_selection import VarianceThreshold

# 创建特征矩阵:
# 特征 0:80% 的类 0
# 特征 1:80% 的类 1
# 特征 2:60% 的类 0,40% 的类 1
X = [[0, 1, 0],
     [0, 1, 1],
     [0, 1, 0],
     [0, 1, 1],
     [1, 0, 0]]

在二元特征(即伯努利随机变量)中,方差计算如下:

\operatorname {Var} (x)= p(1-p)

其中 p 是类 1 观测的比例。 因此,通过设置 p,我们可以删除绝大多数观察是类 1 的特征。

# Run threshold by variance
thresholder = VarianceThreshold(threshold=(.75 * (1 - .75)))
thresholder.fit_transform(X)

'''
array([[0],
       [1],
       [0],
       [1],
       [0]]) 
'''

用于特征选择的方差阈值

image
from sklearn import datasets
from sklearn.feature_selection import VarianceThreshold

# 加载鸢尾花数据
iris = datasets.load_iris()

# 创建特征和目标
X = iris.data
y = iris.target

# 使用方差阈值 0.5 创建 VarianceThreshold 对象
thresholder = VarianceThreshold(threshold=.5)

# 应用方差阈值
X_high_variance = thresholder.fit_transform(X)

# 查看方差大于阈值的前五行
X_high_variance[0:5]

'''
array([[ 5.1,  1.4,  0.2],
       [ 4.9,  1.4,  0.2],
       [ 4.7,  1.3,  0.2],
       [ 4.6,  1.5,  0.2],
       [ 5\. ,  1.4,  0.2]]) 
'''
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351