记一次耗时毛刺排查

前段时间的某天,注意到一个服务的平均耗时出现了如下图的毛刺现象。


耗时毛刺

注意到毛刺出现极其规律,每30分钟出现一个毛刺。考虑到这种规律性,并结合服务的流量较小(20 QPS)推测,可能是某个定时请求的接口进行了耗时操作,由于流量较小放大了平均耗时,继而出现了毛刺。但排查主调调用的接口,并没有发现定时的调用,从而否定了这种可能性。
排除服务外部的原因导致的毛刺,那么只剩下服务内部的原因了。该服务为JAVA应用,考虑到服务GC会导致应用暂停,使外部请求耗时异常增长;但是,并不能解释如此规律的毛刺。抱着“死马当活马医”的想法,使用如下命令

jstat -gc pid 3000

查看了服务的GC情况,结果有了意外发现:产生毛刺时发生了多次GC,GC情况如下图:


毛刺时的GC情况

分析数据,得知产生一个毛刺时Young GC进行了237-231=6次,Full GC进行了303-294=9次,Full GC的时间664-641=23秒,可知,正是由于GC停顿了20多秒,从而使得平均耗时显著提高。得益于良好的运维,服务启动时加入了如下参数:

    -XX:+UseConcMarkSweepGC -Xloggc:jvm.log -verbosegc -XX:+PrintGCDetails
    -XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCTimeStamps

由此,可以继续分析具体的GC日志:

GC日志部分截图

注意到GC时发生了两次失败:Promotion FailedConcurrent mode Failuer,分别是进程停顿6.8s和5s。截图中省去了部分日志,实际之后还发生了两次Concurrent mode Failuer从而使进程暂停20多秒。
那为什么连GC都如此有规律的每30分钟进行呢?再次排查代码,发现了如下类似的代码:

    public static void refresh() {
        ConcurrentHashMap<String, Integer> newCache = DBUtil.getCache();
        cache = newCache;
        log.info("refresh cache, size:" + newCache.size());
    }

该服务是一个缓存服务,将数据库中的数据读取到内存,然后提供接口查询。由于数据库中的数据会更新,所以需要固定时间(每30分钟)从数据库重新读取数据,刷新缓存。查询数据库中的数据,发现已经有接近500万行的数据。当加载这部分数据到内存时,内存需求暴涨,JVM进行了多次耗时的GC,导致进程暂停,从而使得请求耗时出现毛刺。
找到了问题出现的原因,开始着手进行优化。由于主要是GC问题,故尝试不修改业务代码,直接修改JVM参数的方式进行优化。在优化之前,需要弄明白Promotion FailedConcurrent mode Failuer的原因。
晋升失败Promotion Failed的原因主要有:

  • Survivor区空间不足,Survivor中的对象还不足以晋升到老年代,从年轻代晋升到Survivor的对象大于了Survivor剩余的空间。
  • 从年轻代直接晋升到老年代的对象大于老年代剩余的空间。

由于本例中的对象是突然暴涨的,所以可确定原因为后者,所以需要增大老年代的空间。
并发模式失败Concurrent mode Failuer的原因是:CMS GC回收对象的速度赶不上用户申请对象的速度。当发生并发模式失败后,CMS GC会退回到Serial Old GC使用串行回收,从而使得CMS GC不能发挥作用。解决该问题的方法有:

  • 尽早进行CMS GC即调低-XX:CMSInitiatingOccupancyFraction参数,默认为68
  • 增大老年代空间

由此,将JVM参数由之前的:

    -Xmx2048m -Xms2048m -XX:NewSize=768m -XX:MaxNewSize=768m

调整为:

    -Xmx3072m -Xms3072m -XX:NewSize=1536m -XX:MaxNewSize=1536m

增大新生代的初衷是为了直接容纳下服务刷新时的临时对象,不需要晋升到老年代。观察原来的老年代大约需要700M所以没有进行大的扩容。修改后的效果如下:

请求耗时

高峰耗时减少一半,但依然存在毛刺。查看GC日志,依然存在一次concurrent mode failure
继续调整参数,增大老年代:

    -Xmx4096m -Xms4096m -XX:NewSize=1024m -XX:MaxNewSize=1024m

整个堆内存从2G扩容到4G,老年代从1.25G扩容到3G,内存已经较为充足。调整后,耗时大幅降低,也没有出现concurrent mode failure,但依然没有消除毛刺现象,效果图如下:

请求耗时

再次查看GC日志,发现耗时主要集中在年轻代回收:
GC情况

尝试使用UseParallelOldGC加快年轻代回收,但是年老代耗时过长。不能同时使用Parallel Scavenge回收年轻代,CMS回收年老代真是大坑。最后更换为G1 GC大大减少了Full GC,毛刺抖动得到大大缓解,效果如下:
请求耗时

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342