m基于模糊控制的网络时延预测和丢包率matlab仿真

1.算法仿真效果

matlab2022a仿真结果如下:


2.算法涉及理论知识概要

涉及到具体的数据包大小以及时间延迟,我们通过构建一个FIFO,来虚拟网络的实际工作情况,当空闲情况下,网络流量非常小,我们的数据通过FIFO,会在FIFO内排队,等候前面的数据传输出去后,再发送出去,在FIFO中等候时间为30~60ms,小于发送间隔,因此,不会发生堵塞,而当网络比较拥堵的情况下,那么FIFO中包含了大量的网络背景流量,那么当前数据发送出去的时候,就会在FIFO内等候,这个等候时间往往120ms到180ms之间,当时间过了100ms,此时,第二个数据发送过来饿了,如果此时FIFO已经满了,那么就会发送丢包(FIFO满,则说明网络负荷达到极限,进入的数据全部丢失)。另外,在等候时间中,数据会以一个随机的小概率丢包,那么等候时间越长,丢包的概率就越大。然后假设FIFO中每次数据的流量的时间长度为1ms,如果等候时间为100ms,则说明拥堵在当前数据前的背景流量有100kb通过这个原理我们来进行仿真实现,FIFO的深度大小,反应了实际网络的传输能力。下面我们首先对原始的传输方法进行仿真。


自适应传输模糊控制器的实现


将依照FFSI推理方法建立自适应传输模糊控制器,首先对输入、输出变量进行模糊划分,以往返时延的差值和当前时刻的发包时间间隔Tc作为模糊控制器的输入,模糊控制器的输出是下一次发包时间间隔的调整,通过与当前时刻发包时间间隔Tc累加作为下一时刻的发包间隔Tn。


网络时延的测量可知,端到端网络时延整体上随时间变化幅度较大,不适合直接用RTT值作为模糊控制器的输入变量。本文采用当前时刻预测时延与当前时刻的往返时延值RTTc的差值作为ATFC的一个输入变量。的隶属度函数如图5.9所示,论域为[-15ms,15ms],共分为7个模糊等级,分别为:负大(NB)、负中(NM)、负小(NS)、零(ZE)、正小(PS)、正中(PM)、正大(PB)。



ATFC应用在网络拥塞场景下,当拥塞恶化时应增大发包间隔,减少网络拥塞对能耗数据包的影响,降低传输丢包率;当拥塞减缓时应减小发包间隔的原则,提高能耗数据包的传输效率。结合先验经验制定ATFC模糊控制规则如表所示。


3.MATLAB核心程序

%注入背景流量,使得网络进入拥塞状态,即网络时延明显变大,时延抖动加剧,

%空闲状态下时延值要求在30~60ms,拥塞状态下要求在120~180ms,我们要对比的区间就是在拥塞状态下。

MTKL = 100;%蒙特卡洛循环次数

DBL1 = cell(1,MTKL);

for jj = 1:MTKL

jj

rng(jj)

DBL2        = [];    

%即能够存放1000kB数据量

ability     = 4.3;%网络(FIFO)1ms内传输能力

FIFO_Depth  = 200;

bg_Size     = zeros(1,Times);

pg_Size     = zeros(1,Times);

FIFO_Size   = FIFO_Depth*ones(1,Times);

DB          = 0;%定义丢包次数

ALL         = 0;%总发送次数

for i  = 1:Times

%发送数据包,原始传输方法,每100ms发送一次

if mod(i,100) == 1

pg_Size(i)  = Pg_Size_sub;

ALL         = ALL +1;

else

pg_Size(i)  = 0;

end    

%建立一个虚拟的FIFO,当网络空闲的时候,数据包通过这个FIFO需要

......................................................................

%计算当前环境下的丢包变换曲线并显示最后的丢包率值

DBL2(ALL) = DB/ALL;

end

DBL1{jj}  = DBL2;

Lens(jj)  = ALL;

end


%计算均值

DBLavg = zeros(1,min(Lens));

for i = 1:min(Lens)

tmps = 0;

for jj = 1:MTKL

tmps = tmps + DBL1{jj}(i);

end

DBLavg(i) = tmps/MTKL;

end


figure;

plot(FIFO_Size);

xlabel('时间(ms)');

ylabel('网络流量承载能力变换情况');

grid on



figure;

subplot(211);

plot(100*DBLavg,'-bs',...

'LineWidth',2,...

'MarkerSize',8,...

'MarkerEdgeColor','k',...

'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('发送次数');

ylabel('丢包率');

grid on

STR = ['最终丢包率:',num2str(100*DBLavg(end)),'%'];

text(length(DBLavg)/2,70,STR);

axis([0,length(DBL2),0,100]);


ind = find(pg_Size>0);

Len = length(ind);



subplot(212)

plot(pg_Size(1:(Len-1)*100),'b-o');

axis([0,1500,0,3]);

xlabel('times');

ylabel('发送数据包大小');

grid on

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容