Notes for "On the mathematical foundations of learning"

This is a note for the following paper:
F. Cucker, S. Smale, On the mathematical foundations of learning, Bulletin of The American Mathematical Society, 39(1), 1-49, 2001.

Page 6, Remark 2

In addition, \sigma_{\rho}^{2} = 0, the error above specializes to the error mentioned in that discussion, and the regression function f_{\rho} of \rho coincides with f_{T} execpt for a set of measure zero in X.

Note:
For a given x, we have
y = \left\{\begin{aligned} & 1 \quad x\in T, \\ & 0 \quad x\notin T. \end{aligned}\right.
For the regression function, we may have
f_{\rho}(x) = \int_{Y}yd\rho(y|x) = 1\rho(1|x) + 0\rho(0|x),
where \rho(1|x) = 1 for x\in T and \rho(1|x) = 0 for x\notin T. Hence, we find that
f_{\rho}(x) = \left\{\begin{aligned} & 1 \quad x\in T, \\ & 0 \quad x\notin T, \end{aligned}\right.
which coincides with f_{T}.

Page 10, line 6

Thus, \mathcal{H}_d is a vector space of dimension
N = \left(\begin{aligned} & n+d \\ & \quad n \end{aligned}\right).

Note:
Obviously, the conclusion is correct for n = 1. We employ second mathematical induction to illustrate the result. Suppose the result is correct for n-1 to 1, let us verify the case n. For the additional dimension, we can let \alpha_n = 0, 1, \cdots, d. Then, the number of possible ways should be
\left(\begin{aligned} & n-1+d \\ & \quad n-1 \end{aligned}\right) + \left(\begin{aligned} & n-1+d - 1 \\ & \qquad n-1 \end{aligned}\right) + \cdots + \left(\begin{aligned} & n-1 \\ & n-1 \end{aligned}\right).
Written the above formula in a concise manner, we obtain
\sum_{i=0}^{d}\left(\begin{aligned} & n-1+i \\ & \quad n-1 \end{aligned}\right) = \sum_{i=0}^{d}\left(\begin{aligned} & n-1+i \\ & \quad\quad i \end{aligned}\right) = \left(\begin{aligned} & n + d \\ & \quad d \end{aligned}\right) = \left(\begin{aligned} & n + d \\ & \quad n \end{aligned}\right).
These calculations verify the desired conclusions.

Page 21, The proof of Proposition 7

Proposition 7 follows from Lemma 8 by applying the same argument used to prove Theorem B from Proposition 3

Note:
Let \ell = \mathcal{N}\left(\mathcal{H}, \frac{\alpha\epsilon}{4M}\right) and consider f_1, \cdots, f_\ell such that the disks D_j centered at f_j and with radius \frac{\alpha\epsilon}{4M} cover \mathcal{H}. Then for every f\in D_j, we have \|f-f_j\|_{\infty} \leq \frac{\alpha\epsilon}{4M}. Employing Lemma 8, we find that
\begin{align} & \text{Prob}_{z\in Z^m}\left\{ \sup_{f\in D_j} \frac{ \mathcal{E}_{\mathcal{H}}(f)-\mathcal{E}_{\mathcal{H},z}(f)}{\mathcal{E}_{\mathcal{H}}(f)+\epsilon} \geq 3\alpha\right\} \\ \leq & \text{Prob}_{z\in Z^m}\left\{ \frac{ \mathcal{E}_{\mathcal{H}}(f_j)-\mathcal{E}_{\mathcal{H},z}(f_j)}{\mathcal{E}_{\mathcal{H}}(f_j)+\epsilon} \geq 3\alpha\right\} \leq e^{-\frac{\alpha^2 m\epsilon}{8M^2}}. \end{align}
Proposition 7 has been proved.

Page 27, Proof of Theorem 3

First note that by replacing A by A^s we can reduce the problem in both part (1) and (2) to the case s=1

Note:
Since s > r > 0 is equivalent to 1 > r' > 0 with r' = \frac{r}{s}. From the proof, especially the formula of \hat{t}, we know that
\min_{b\in H}\|b-a\|^2 + \gamma \|A^{-1}b\|^2 \leq \gamma^{r'} \|A^{-r'}a\|^2
holds true when 0<r'<1. Replacing A with A^{s}, we obtain
\min_{b\in H}\|b-a\|^2 + \gamma \|A^{-s}b\|^2 \leq \gamma^{r'} \|A^{-sr'}a\|^2.
Finally, we arrive at
\min_{b\in H}\|b-a\|^2 + \gamma \|A^{-s}b\|^2 \leq \gamma^{r/s} \|A^{-r}a\|^2
with 0 < r< s. Similarly, we can deduce the estimation (2). Here, the result (1) is slightly different from the statment in Theorem 3. It may be a small mistake.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容