分页查询优化方案简述

image.png

用此导图展示本文大纲。

写在前面
当我们需要从数据库查询的表里有上万条记录时,一次性查询所有数据,结果返回会变得很慢,特别是随着数据量的增加,加载时长更久,这时需要使用到分页查询。对于数据库分页查询,有很多种方法和优化点。笔者就所知总结了如下实用方法。

案例准备

笔者已有的一张表用于对以下case进行测试,这里简单介绍该表结构信息。

  • 表名:order_history
  • 描述:某业务历史订单
  • 主要字段:unsigned int id,tinyint(4) int type
  • 字段概况:该表一共37个字段,不包含text等大型数据,最大为varchar(500),id字段为索引,且为递增。
  • 数据量:5709294

MySQL版本:5.7.16
线下找一张百万级的测试表可不容易,读者若需进行自测,可以自建数据表(利用shell脚本插入足够量的数据)。
以下所有sql 语句执行的环境没有发生改变:

select count(*) from orders_history;

测试结果:
返回结果:5709294
笔者执行以上语句三次,查询耗时分别为:

8903 ms
8323 ms
8401 ms

常见分页查询方法简述

一般的分页查询,使用简单的 limit 子句就可以实现。
limit 子句声明如下:

SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset

LIMIT 子句可以被用于指定 SELECT 语句返回的记录数。
需注意以下几点:

  • 第一个参数指定第一个返回记录行的偏移量,注意从0开始
  • 第二个参数指定返回记录行的最大数目
  • 如果只给定一个参数:它表示返回最大的记录行数目
  • 第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行
  • 初始记录行的偏移量是 0(而不是 1)
    下面是一个应用实例:
select * from orders_history where type=8 limit 1000,10;

该条语句将会从表 orders_history 中查询offset: 第1000开始之后的10条数据,也就是第1001条至第1010条数据(1001 <= id <= 1010)。
数据表中的记录默认使用主键(一般为id)排序,当数据量达到1万以上时:

select * from orders_history where type=8 order by id limit 10000,10;

三次查询耗时分别为:

3040 ms
3063 ms
3018 ms

针对这种查询方式,下面测试查询记录量对耗时的影响:

select * from orders_history where type=8 limit 10000,1;
select * from orders_history where type=8 limit 10000,10;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 10000,1000;
select * from orders_history where type=8 limit 10000,10000;

三次查询耗时如下:
查询1条记录:3072ms 3092ms 3002ms
查询10条记录:3081ms 3077ms 3032ms
查询100条记录:3118ms 3200ms 3128ms
查询1000条记录:3412ms 3468ms 3394ms
查询10000条记录:3749ms 3802ms 3696ms

另外笔者还进行了十来次测试,从查询耗时来看,当查询数据量低于100时,查询耗时没有差距,随着查询数据量越来越大,耗时也越长。
针对查询偏移量的测试:

select * from orders_history where type=8 limit 100,100;
select * from orders_history where type=8 limit 1000,100;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 100000,100;
select * from orders_history where type=8 limit 1000000,100;

三次查询时间如下:
查询100偏移:25ms 24ms 24ms
查询1000偏移:78ms 76ms 77ms
查询10000偏移:3092ms 3212ms 3128ms
查询100000偏移:3878ms 3812ms 3798ms
查询1000000偏移:14608ms 14062ms 14700ms
随着查询偏移增大,特别是查询偏移大于10万以后,查询耗时显著增加
这种分页查询方式会从数据库第一条记录开始扫描,所以越往后,查询速度越慢,而且查询的数据越多,也会拖慢总查询速度。

采用子查询进行优化

这种方式先定位偏移位置的 id,然后往后查询,这种方式适用于 id 递增的情况。

select * from orders_history where type=8 limit 100000,1;

select id from orders_history where type=8 limit 100000,1;

select * from orders_history where type=8 and
id>=(select id from orders_history where type=8 limit 100000,1)
limit 100;

select * from orders_history where type=8 limit 100000,100;

4条语句的查询时间如下:
第1条语句:3674ms
第2条语句:1315ms
第3条语句:1327ms
第4条语句:3710ms

针对上面的查询需要注意:

  • 比较第1条语句和第2条语句:使用 select id 代替 select * 速度增加了3倍
  • 比较第2条语句和第3条语句:速度相差几十毫秒
  • 比较第3条语句和第4条语句:得益于 select id 速度增加,第3条语句查询速度增加了3倍

这种方式相较于原始一般的查询方法,将会增快数倍。

采用 id 限定进行优化

这种方式假设数据表的id是连续递增的,则我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:

select * from orders_history where type=2
and id between 1000000 and 1000100 limit 100;

查询时间:15ms 12ms 9ms

这种查询方式能够极大地优化查询速度,能够在几十毫秒之内完成。受限条件为:只能使用于明确知道id的情形。不过,一般建表的时候,都会添加id字段,这为分页查询带来很多便利。

还有另外一种写法:

select * from orders_history where id >= 1000001 limit 100;

当然,还可使用 in 的方式来进行查询,这种方式经常用在多表关联的时候进行查询,使用其他表查询的id集合,来进行查询:

select * from orders_history where id in
(select order_id from trade_2 where goods = 'pen')
limit 100;

in 查询方式需注意:某些 mysql 版本不支持在 in 子句中使用 limit。

采用临时表进行优化

临时表优化已经不属于查询优化,笔者附带说明一下。
对于使用 id 限定优化中的问题,需要 id 是连续递增的,但是在一些场景下,比如使用历史表的时候,或者出现过数据缺失问题时,可以考虑使用临时存储的表来记录分页的id,使用分页的id来进行 in 查询。这样能够极大的提高传统的分页查询速度,尤其是数据量上千万的时候。

关于数据表的id说明

一般情况下,在数据库中建立表的时候,会为每一张表添加 id 递增字段,这样方便后续查询。
订单库等数据量非常庞大的情况,一般会进行分库分表。此时,不建议使用数据库 id 作为唯一标识,而应该使用分布式高并发唯一 id 生成器来生成,并在数据表中使用另外字段来存储这个唯一标识

  • 首先使用范围查询定位 id (或者索引),即先 select id
  • 然后再使用索引进行定位数据,能够提高好几倍查询速度。再 select *;

欢迎提出建议与笔者一起学习交流~~~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容