On *Keeping up with Quants* Ch1

Quants就是宽客的意思,数据、模型量化工程师。

***

What Are Analytics?

>A extensive use of data, statistical and quantitative analysis, explanatory and predictive models, and fact based managmeent to drive decisions and add value.

(***key words: data->stat\quant->explain->predict->optimizing management&decision***)

>Analytics according to methods and purpose.

*1 Descriptive Analytics: involve gathering, organizing, tabulating, and depicting data and then describing the characteristics about what is being studied. It might be useful, but doens't tell you anything about why the results or what will happen.

*2 Predictive Analytics: use data from the past to predict the futures. Identifying association among variables and predicting the likelihood of a phenomenon--say, that a customer will respond to a particular product Ads by purchasing it--on the basis of the identified relationship. In fact, the presence of causal relationships is not always necessary to make accurate predictions.

*3 Prescriptive analytics: include methods such as experimental design and optimization. It suggests a course of action. Experimental design tries to answer the questions of why somenthing happened by conducting experiments. To make causal inferences with confidence in causal research, researchers must manipulate one or more independent variables and effectively control other extraneous variables. If the test group performs substantially better than the control group--then the decision maker should apply that condition broadly.

*4 Optimization: attempts to identify the ideal level of a particular varible in its relationship to another. For example, we might be interested in identifying the price of a product that is most likely to lead to high profitability for a product. Similarly, optimization approaches could identify the level of inventory in a warehouse that is most likely to avoid stock=outs in a retail organization.

>Analytics classifies by the process employed and the type of data that are collected and analyzed

*1 Qualitative analysis: amid to gather an in-depth understanding of the underlying reasons and motivations for a phenomenon. Usaually unstructured data is collected form a small number of nonrepresentative cases and analyzed nonostatistically.

*2 Quantitative analytics refers to the systematic empirical investigation of phenomena via statistical, mathematical, or computational techniques, Structured data is collected from a large number of representative cases and analyzed statistically.

***

Jargon:

Statistics: The science of collection, organization, analysis, interpretation, and presentation of data

Forecasting: The estimation of some variable of interest at some specified future point in time as a function of past data.

Data mining: The automatic or semiautomatic extraction of previously unknown, interesting patterns in large quantities of data through the use of computational algorithmic and statistical techniques.

Text mining: The process of deriving patterns and trends from text in a manner similar to data mining.

Optimization: The use of mathematical techniques to find optimal solutions with regard to some criteria while satisfying constraints.

Experimental design: The use of test and control groups, with random assignment of subjects or cases to each group, to elicit the cause and effect relationships in a particular outcome.

More Jargon:

Small data: structured, quantitative and small volumes(TB)

Big data: unstructured data in large volumes(tenth PB)

*In what situation shall we apply analytics: The decisions that work well with analytics are those that are made repeatedly, allow for some time to do the analysis, and are important enough to justify an investment.*

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容

  • 使用brew安装mysql、 $:brew install mysql 安装完成后 $:mysql 发现报错了 E...
    Shudamu阅读 238评论 0 0
  • 谷歌的目标设定需要公司所有员工参与,彼此之间要相互支持,相互配合。目标要有年度OKRs,也有季度OKRs。季度OK...
    啊姣阅读 594评论 0 0
  • 2015.05.22大多数人(包括我自己)暴露在基本相同的信息源下、有着大概一样的惰性,没有谁比谁聪明,也没有谁比...
    纹路阅读 451评论 0 1