题目描述:
编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target。该矩阵具有以下特性:
每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
示例:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。
因为矩阵的行和列是排序的(分别从左到右和从上到下),所以在查看任何特定值时,我们可以修剪O(m)或O(n)元素。
算法:
首先,我们初始化一个指向矩阵左下角的 (row,col) 指针。然后,直到找到目标并返回 true(或者指针指向矩阵维度之外的 (row,col) 为止,我们执行以下操作:如果当前指向的值大于目标值,则可以 “向上” 移动一行。 否则,如果当前指向的值小于目标值,则可以移动一列。不难理解为什么这样做永远不会删减正确的答案;因为行是从左到右排序的,所以我们知道当前值右侧的每个值都较大。 因此,如果当前值已经大于目标值,我们知道它右边的每个值会比较大。也可以对列进行非常类似的论证,因此这种搜索方式将始终在矩阵中找到目标(如果存在)。
作者:LeetCode
链接:https://leetcode-cn.com/problems/search-a-2d-matrix-ii/solution/sou-suo-er-wei-ju-zhen-ii-by-leetcode-2/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Java代码:
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix.length == 0) return false;
int row = matrix.length - 1;
int col = 0;
while(row >= 0 && col < matrix[0].length) {
if(matrix[row][col] > target) {
row--;
}else if(matrix[row][col] < target) {
col++;
}else {
return true;
}
}
return false;
}
}