kibana 请求

//1.基本命令
//删除索引
delete /test
/创建索引/
put /test
{
"settings":{
"number_of_shards":1,
"number_of_replicas":1
}
}

delete /employee
put /employee
{
"settings":{
"number_of_shards":1,
"number_of_replicas":1
}
}
/没有则创建 有则修改/
put /employee/_doc/1
{
"name":"汤姆",
"age":30
}
/指定字段修改/
post /employee/_doc/6/_update
{
"doc":{
"age":"3"
}
}
/创建/
post /employee/_doc/6/_create/
{
"name":"兄长",
"age":1
}
/获取索引记录/
get /employee/_doc/2
/删除文档/
delete /employee/_doc/2
/查询全部/
get /employee/_doc/_search

//使用结构化的方式创建索引
put /employee
{
"settings":{
"number_of_shards":1,
"number_of_replicas":1
},
"mappings":{
"_doc":{
"properties":{
"name":{"type":"text"},
"age":{"type":"integer"}
}
}
}
}
}
//不带条件查询所有记录
get /employee/_doc/_search
{
"query":{
"match_all":{}
}
}
//分页查询
get /employee/_doc/_search
{
"query":{
"match_all":{}
},
"from":0,
"size":30
}
//带关键字查询
get /employee/_doc/_search
{
"query":{
"match":{"name":"兄长"}
}
}
//带排序查询
get /employee/_doc/_search
{
"query":{
"match":{"name":"兄长"}
},
"sort":[
{"age":{"order":"desc"}}
]
}
//带filter 不打分_source都是0.0
get /employee/_doc/_search
{
"query":{
"bool":{
"filter":[
{"term":{"age":30}}
]}
}
}
get /employee/_doc/_search
{
"query":{
"bool":{
"filter":[
{"match":{"name":"兄"}}
]}
}
}
//带聚合
get /employee/_doc/_search
{
"query":{
"match":{"name":"兄"}
},
"sort":[
{"age":{"order":"desc"}}
],
"aggs":{
"group_by_age":{
"terms":{"field":"age"}
}
}
}
//2.高级查询
//新建一个索引
put /movie/_doc/1
{
"name": "Eating an apple a day & keeps the doctor away"
}
get /movie/_doc/_search
{
"query":{
"match":{
"name":"eat"
}
}
}
//使用analyze api查看分词状态
get /movie/_analyze
{
"field":"name",
"text": "Eating an apple a day & keeps the doctor away"
}
delete /movie
//使用结构化方式创建索引 英文分词
put /movie
{
"settings":{
"number_of_shards":1,
"number_of_replicas":1
},
"mappings":{
"_doc":{
"properties":{
"name":{"type":"text","analyzer":"english"}
}
}
}
}
//3.类型
//text : 被分析索引的字符串类型
//keyword:不能被分析只能精确匹配的字符串类型
//date:日期类型,可以配合format一起使用
//数字类型:long、integer、short、double等
//boolean:true false
//array:["one","two"]
//object:json 嵌套
//ip类型
//geo_point:地理位置
//4.tmdb

put /movie
{
"settings":{
"number_of_shards":1,
"number_of_replicas":1
},
"mappings":{
"_doc":{
"properties":{
"title":{"type":"text","analyzer":"english"},
"tagline":{"type":"text","analyzer":"english"},
"release_date":{"type":"date","format":"8yyyy/MM/dd||yyyy/MM/d||yyyy/M/dd||yyyy/M/d"},
"popularity":{"type":"double"},
"overview":{"type":"text","analyzer":"english"},
"cast":{
"type":"object",
"properties":{
"character":{"type":"text", "analyzer":"standard"},
"name":{"type":"text", "analyzer":"standard"}
}
}
}
}
}
}

get /movie/_analyze
{
"field":"title",
"text":"basketball with cartoom aliens"
}
//搜索内容 match
get /movie/_doc/_search
{
"query":{
"match":{"title":"steve zissou"}
}
}
//搜索内容 term 不进行分词分析直接去索引查询
get /movie/_doc/_search
{
"query":{
"term":{"title":"steve zissou"}
}
}
//分词后的and和or的逻辑
get /movie/_doc/_search
{
"query":{
"match":{"title":"basketball with cartoom aliens"}
}
}
//改成and
get /movie/_search
{
"query":{
"match":{
"title":{
"query":"basketball love aliens",
"operator":"and"
}
}
}
}
//最小匹配项
get /movie/_search
{
"query":{
"match":{
"title":{
"query":"basketball love aliens",
"operator":"or",
"minimum_should_match": 2
}
}
}
}
//短语查询 查询不做分析分词
get /movie/_search
{
"query":{
"match_phrase":{"title":"steve zissou"}
}
}

多字段查询

get /movie/_search
{
"query":{
"multi_match":{
"query":"basketball with cartoom aliens",
"fields":["title", "overview"]
}
}
}

评分分析

get /movie/_search
{
"explain":true,
"query":{
"multi_match":{
"query":"basketball with cartoom aliens",
"fields":["title", "overview"],
"tie_breaker": 0.3
}
}
}

优化多词查询

get /movie/_doc/_search
{
"query":{
"multi_match": {
"query":"basketball with cartoom aliens",
"fields":["title^10", "overview"],
"tie_breaker": 0.3
}
}
}

不同的multi_query其实是有不同的type

best_fields:默认的得分方式,取最高的分数作为对应文档的对应分数

most_fields:考虑绝大多数(所有的)文档的字段得分相加,获得我们想要的结果

cross_fields :已分词为单位计算总分 适用于词导向的场景

get /movie/_doc/_search
{
"explain":true,
"query":{
"multi_match": {
"query":"steve zissou",
"fields":["title^10", "overview"],
"type": "best_fields"
}
}
}
get /movie/_doc/_search
{
"explain":true,
"query":{
"multi_match": {
"query":"steve zissou",
"fields":["title^10", "overview^0.3"],
"type": "most_fields"
}
}
}
get /movie/_doc/_search
{
"explain":true,
"query":{
"multi_match": {
"query":"basketball with cartoom aliens",
"fields":["title^10", "overview^0.3"],
"type": "cross_fields"
}
}
}

bool 查询

must not 必须都是false

must 必须都是true

should 其中有一个为true即可 为true的越多则得分越高

get /movie/_doc/_search
{
"query":{
"bool":{
"should":[
{"match": {"title":"basketball with cartoom aliens"}},
{"match": {"overview":"basketball with cartoom aliens"}}
]
}
}
}

query string

方便的利用 and or not

get /movie/_doc/_search
{
"query":{
"query_string": {
"fields": ["title"],
"query": "steve OR jobs"
}
}
}

filter 过滤查询

get /movie/_search
{
"query":{
"bool":{
"filter":{
"term":{"title":"steve"}
}
}
}
}

多条件过滤

get /movie/_search
{
"query":{
"bool":{
"filter":[
{"term":{"title":"steve"}},
{"term":{"cast.name":"gaspard"}},
{"range":{"release_date":{"lte":"2015/01/01"}}},
{"range":{"popularity":{"gte":"25"}}}
]
}

},
"sort":[
{"popularity":{"order":"desc"}}
]
}

带match打分的filter

get /movie/_search
{
"query":{
"bool":{
"should":[
{"match":{"title":"life"}},
{"multi_match": {
"query":"basketball with cartoom aliens",
"fields":["title^10", "overview^0.3"],
"type": "cross_fields"
}
}
],
"filter":[
{"range":{"release_date":{"lte":"2020/01/01"}}},
{"range":{"popularity":{"gte":"0"}}}
]
}
}
}

自定义score计算

get /movie/_search
{
"explain":true,
"query":{
"function_score": {
"query": {
"multi_match": {
"query": "steve job",
"fields": ["title", "overview"],
"type":"most_fields"
}
},
"functions": [
{
"field_value_factor": {
"field": "popularity", //对应要处理的字段
"modifier": "log2p",
"factor": 10
}
},
{
"field_value_factor": {
"field": "popularity", //对应要处理的字段
"modifier": "log2p",
"factor": 5
}
}
],
"score_mode":"sum",
"boost_mode":"sum"
}
}
}

测试ik分词器

get _analyze
{
"analyzer":"ik_smart",
"text":"中华人民共和国国歌"
}

最大化分词

get _analyze
{
"analyzer":"ik_max_word",
"text":"中华人民共和国国歌"
}
get _analyze
{
"analyzer":"english",
"text":"basketball with cartoom aliens"
}

analyzer 指定的是构建索引的时候的分词

search_analyzer 指定的是搜索关键字时候的分词

最佳实践: 构建索引的时候使用max_word,但是查询的时候使用smartword

使用距离排序

get /shop/_search
{
"query":{
"match":{"name":"凯越"}
},
"_source":*,
"script_fields":{ //es 脚本
"distance": {
"script":{
"source": "haversin(lat,lon,doc['location'].lat,doc['location'].lon)",
"lang":"expression",
"params":{"lat":23.11,"lon":127.12}
}
}
},
"sort":[
{
"_geo_distance": { //距离计算排序
"location": {
"lat":23.11,
"lon":127.12
},
"order":"asc",
"unit":"km",
"distance_type":"arc"
}
}
]
}

使用function_score解决排序模板

get /shop/_search
{
"_source":*,
"script_fields":{ //es 脚本
"distance": {
"script":{
"source": "haversin(lat,lon,doc['location'].lat,doc['location'].lon)",
"lang":"expression",
"params":{"lat":23.11,"lon":127.12}
}
}
},
"query":{
"function_score": {
"query": {
"bool":{
"must": [
{ "match":{"name":"凯越"}},
{"term":{"seller_disabled_flag":0}}
]
}

  },
  "functions": [
    {
      "gauss":{
        "location":{
          "origin":"23.11,127.12",
          "offset":"0km",
          "scale":"100km",
          "decay":0.5
        }
      },
      "weight": 9
    },
    {
      "field_value_factor": {
        "field": "remark_score"
      },
      "weight": 0.2,
    },
    {
      "field_value_factor": {
        "field": "seller_remark_score"
      },
      "weight": 0.1
    },
    {
      "filter": { 
        "term": { "name": "*" }
      },
      "weight": 1
    }
  ]
}

}
}


//创建
put /employee2
{
"settings":{
"number_of_shards":1,
"number_of_replicas":1
},
"mappings":{
"_doc":{
"properties":{
"name":{"type":"text"},
"age":{"type":"integer"}
}
}
}
}
}
//添加字段
put /employee2/_mapping/_doc
{
"properties": {
"auditStatus": {
"type": "integer"
}
}
}
//查询
{"_source":"*",
"script_fields":{
"distance":{
"script":{
"source": "haversin(lat,lon,doc['location'].lat,doc['location'].lon)",
"lang": "expression",
"params":{"lat":39.995125, "lon":116.474152}
}
}
},
"query": {
"function_score": {
"query":{
"bool":{
"should":[
{"match_all":{}}
],
"filter":[{"terms":{"status":[3]}},{"range":{"editTime":{"lte":"2021-12-01 09:33:53"}}}],
"minimum_should_match":1
}
},
"functions":[{"gauss":{"location":{"offset":"0km","origin":"39.995125,116.474152","scale":"500km","decay":0.5}},"weight":0},{"field_value_factor":{"field":"id","modifier":"log2p","factor":2},"weight":0},{"field_value_factor":{"field":"praiseNum","modifier":"log2p","factor":2},"weight":0},{"field_value_factor":{"field":"commentNum","modifier":"log2p","factor":2},"weight":0},{"field_value_factor":{"field":"rewardNum","modifier":"log2p","factor":2},"weight":0},{"field_value_factor":{"field":"reward","modifier":"log2p","factor":2},"weight":0},{"filter":{"match":{"categoryName":"情感"}},"weight":0},{"filter":{"term":{"topStatus":1}},"weight":50000000}],
"score_mode": "sum",
"boost_mode": "sum"
}
},
"sort": [
{
"_score":{
"order": "desc"
},
"updateTimestamp" :{
"order": "desc"
} }
],
"from":0,"size": 10}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容