two sum
两种常见方法
- 时间复杂度 O(n), 空间复杂度O(1)
# two pointer for sorted array
class Solution(object):
def twoSum(self, numbers, target):
"""
:type numbers: List[int]
:type target: int
:rtype: List[int]
"""
# time: O(n)l space: O(1)
numbers = sorted(numbers)
l,r = 0, len(numbers)-1
while l<r:
if numbers[l]+numbers[r] < target:
l+=1
elif numbers[l]+numbers[r] > target:
r-=1
else:
return (l+1,r+1)
- 时间复杂度 O(n), 空间复杂度O(n)
# hash 表的存在是为了更快的找到pair num的下标
class Solution(object):
def twoSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
#build hashmap
maps = {}
for i,ele in enumerate(nums):
remain = target - ele
if remain in maps.keys():
return (maps[remain],i)
else:
maps[ele] = i
three sum
description: find no duplicated triplet that sum to zero from array
重点在于如何去掉重复的triplet
- 很直接但也有效的方式
class Solution(object):
def threeSum(self, nums):
ans = set()
if len(nums) < 3: return ans
if nums.count(0) >= 3: ans.add((0,0,0))
nums_set = set(nums)
numMax, numMin = max(nums_set), min(nums_set)
if numMax <= 0 or numMin >= 0: return ans
# Split into two parts, positive and negative, so don't have to iterate the whole nums. It reduces about 70% time.
setP = set(num for num in nums_set if (num > 0 and num <= -2 * numMin))
setN = set(num for num in nums_set if (num < 0 and num >= -2 * numMax))
count = collections.Counter(nums)
for numP in setP:
for numN in setN:
numD=-numP-numN
if numD in nums_set:
val=tuple(sorted([numD,numP,numN]))
# this step make sure that count num correctly
# 比如 numN = -1 只出现一次的话,上述操作可能会有(-1,-1,2),
# 但是2<1会过滤掉这个答案。
if val.count(numD)<=count[numD] and val.count(numP)<=count[numP] and val.count(numN)<=count[numN]:
ans.add(val)
return ans
- 由于要考虑重复数字的情况,一个一个处理比较好,那么就从two pointer的two sum到three sum吧, 很容易想到O(n^2)的方法
class Solution(object):
def threeSum(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
solution_set = []
nums = sorted(nums)
print(nums)
for i in range(len(nums)-2):
if ( i == 0 or nums[i] != nums[i-1]):
target = 0 - nums[i]
low, high = i+1, len(nums)-1
while(low < high):
if(nums[low]+nums[high] == target):
solution_set.append([nums[i],nums[low],nums[high]])
while(low < len(nums)-1 and nums[low] == nums[low+1]):
low += 1
while(high>=1 and nums[high] == nums[high-1]):
high -= 1
low += 1
high -= 1
elif(nums[low]+nums[high] < target):
low += 1
else:
high -= 1
return solution_set
four sum
说是four sum,实际上是k sum的问题了,如three sum很快就想到1个loop+(k-1)sum,也就是(k-2)loop + two sum, 如何用递归的形式写出这个通用算法呢?
class Solution(object):
def fourSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[List[int]]
"""
nums = sorted(nums)
print(nums)
def kSum(start, k, target):
tmp_set = []
# if k is greater than left nums, return directly
if k > len(nums)-start:
return tmp_set
# k smallest elements, k largets elements
k_min,k_max = 0,0
for i in range(start,start+k):
k_min += nums[i]
k_max += nums[-i+start-1]
if k_min > target or k_max < target:
return tmp_set
elif k > 2:
for i,ele in enumerate(nums[start:-k+1]):
# choose ele and skip duplicate value
if i == 0 or nums[start+i-1] != ele:
small_tmp_set = kSum(start+i+1,k-1,target-ele)
# add ele into tmp_set
#print(small_tmp_set)
if all(small_tmp_set) != 0:
for l in small_tmp_set:
tmp_set.append([ele]+l)
elif k == 2:
low , high = start, len(nums)-1
while(low < high):
if(nums[low]+nums[high] == target):
tmp_set.append([nums[low],nums[high]])
while(low < len(nums)-1 and nums[low] == nums[low+1]):
low += 1
while(high>=1 and nums[high] == nums[high-1]):
high -= 1
low += 1
high -= 1
elif(nums[low]+nums[high] < target):
low += 1
else:
high -= 1
#print('*',k,tmp_set)
return tmp_set
solution_set = kSum(0,4,target)
return solution_set