说说数仓(8)-关于增量


数仓总结目录:
说说数仓(1) - 什么是数仓
说说数仓(2) - 传统数仓与互联网数仓
说说数仓(3) - 数仓架构
说说数仓(4) - 指标字典
说说数仓(5)-最重要的维度之日期维度
说说数仓(6)-关于命名规范
说说数仓(7)-浅谈数据治理
说说数仓(8)-关于增量
说说数仓(9)-上下游约定
说说数仓(10)-任务注释


就数仓方面来说,用的最多的是GreenPlum,GP是一个分布式可拓展的数据库,当初应该整理些GP的使用小手册的,好久没用感觉都忘了。

很多初学者或者没有做个ETL这件事儿的同学对这个增量是有误解的,尤其是在和业务开发同学对接的时候,他们对这个增量的理解也是有偏差的。

先来说说他们以为的增量是什么。他们以为“增量,就是按照时间增量去拿就好了,增量同步,你就把增量后的数据给我好了,不要总是全量同步。”
按道理说,这么做思路是对的,但是不严谨,而且会出错,下面我们就一步一步看看。

1.什么是增量

增量是相对于全量来说的,它们都是处于“同步数据”这个场景下的,比如说业务系统的数据同步到数仓,数仓的数据同步给业务系统,都会使用同步的方式,这都是相对于我们开发来说的,从数据库级也是可以同步的,这里我们就不介绍了。

全量同步,就是说把数据全部同步过去,100条就同步100条,1万条就同步1万条,1亿条就同步1亿条,大家也应该会发现这种方式存在的问题,在数据量小的时候,全量同步简单方便易执行,而当数据量大了以后,尤其是历史数据不会经常变化的时候,全量同步就会浪费大量的资源和时间,严重影响同步效率。

--全量同步一般先delete,然后insert
delete from tmp_a;
insert into tmp_a xxx;
-- 或者直接 insert overwrite
insert overwrite table tmp_a xxx;

SQL语法可能不太一样,差不多就是这个意思,哈哈

记住一定要删除或者覆盖插入,不然数据可就越来越多了。

选择增量同步的几个场景:

  1. 数据量很大,而且历史数据不会频繁变化
  2. 只需要增量数据

使用增量同步,对表有一些要求,比如,需要有create_time,update_time字段
create_time表示记录创建时间,update_time表示记录更新时间,增量的话,只需要把变化的数据拿过来就行了(使用update_time),注意:这里还需要有一个主键,主键是用来覆盖数据的。

这里和不同的业务场景有关系,有的记录创建后不会再更新,类似于流水数据,这种数据直接增量拿过来就好,可以不进行删除操作;
但是有的数据是会更新的,当已经同步过来的数据发生了变化,数仓侧也是需要同步发生变化的。

2. 怎么做增量

增量同步也是要做一次初始化的,初始化是全量来的。

假设我们有这样一张表:

create table tmp_a(
    id bigint,

    create_time datetime,
    update_time datetime

);

一般离线场景下,都会选择在业务量最少的时候去做同步操作,而这个时间大部分都是在半夜凌晨的时候,所以大部分同步都是从0点以后开始,同步昨天的数据,也就是常说的T+1了。
假设3月1号创建了如下4条记录,数仓会在2号凌晨进行同步

2号的时候,新增了1条记录,并且有一条记录更新了,按照增量规则,我们会拿到两条记录

拿到增量数据之后,我们需要将增量的数据合并到我们数仓的表中,

新增的数据,可以直接插入,但是更新的数据,我们需要把原纪录更新掉,或者先删除再插入,以前我们还会记录一个数据插入的状态,如果是更新的,就记一个“update”,如果是插入的就记一个“insert”,到了这里,应该知道为啥需要有主键了吧,如果没有主键,你咋知道这条记录到底变没变过。

使用增量,一般需要两套表,一套表用来存增量数据,一套用来存完整的全量数据。

3. etl_insert_time

不管是增量还是全量,我都比较喜欢加一个时间戳字段,用来标识记录的插入时间,这个尤其是在对比增量数据的时候,排查数据问题很有用。

4. 我们公司的同步机制

我们呢,一创业公司,数据量不算多,使用的都是阿里云的工具,一开始为了方便,所有的数据,都是全量来的,刚看了眼数据量又10几T吧,其中很多是历史数据。

虽然我们是全量来的,但是为了捕捉记录数据的变化,用的是pt(分区)的方式,每天都是一个全量快照,这也是现在存储便宜的一种处理方法,简单粗暴。我刚来的时候,就提过搞成增量,被拒绝了,后来也没有人来搞这个,表太多了,修改起来成本太高。

5. 基于Hive的增量

Hive现在也算是标配了,上面说的增量方案,可能还是基于关系型数据库的,在Hive上,由于运算能力更强大,可以不考虑数据量的问题,所以衍生出来几种方案。主要原因还是Hive上对于delete操作的支持问题,尽量不要有delete。

  • 排序(row_number)
    我们依然每天获取增量数据,然后将增量数据插入到每个分区中,每个分区都是当天的增量数据,当然数据变化的话,同一个主键的记录会出现在多个分区中,所以如果我们要获取最新的完整版数据,可以使用row_number根据主键和时间排序,获取最新版本的全量数据

  • full join
    使用full join的方式,将增量数据和历史全量数据,进行关联,然后取出最新完整版数据

  • left join + union all
    这个和full join的方式类似,感觉这个更美观严谨一些,以前在GP上面做增量也用的这种方式。

6. 拉链表

说到增量,也需要提一下拉链表,拉链表以前用的多一些,感觉在互联网公司用的很少,基本都使用分区的方式处理掉了。
拉链表其实就是记录数据的每一次变化,处理起来稍微有点儿麻烦,这个以前好像写过,等我找找贴过来。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容