2019-03-13

pacheSqoop(SQL-to-Hadoop)项目旨在协助RDBMS与Hadoop之间进行高效的大数据交流。

关系型数据库的数据导入到Hadoop(可保存为多种文件类型:文本类型,Avro二进制类型以及SequenceFiles类型)

与其相关的系统(如HBase和Hive)中;

同时也可以把数据从Hadoop系统里抽取并导出到关系型数据库里。

Sqoop中一大亮点就是可以通过hadoop的mapreduce把数据从关系型数据库中导入数据到HDFS。Sqoop架构非常简单,其整合了Hive、Hbase和Oozie,通过map-reduce任务来传输数据,从而提供并发特性和容错。

Sqoop在import时,需要制定split-by参数。Sqoop根据不同的split-by参数值来进行切分,然后将切分出来的区域分配到不同map中。每个map中再处理数据库中获取的一行一行的值,写入到HDFS中。同时split-by根据不同的参数类型有不同的切分方法,如比较简单的int型,Sqoop会取最大和最小split-by字段值,然后根据传入的num-mappers来确定划分几个区域。比如selectmax(split_by),min(split-by)from得到的max(split-by)和min(split-by)分别为1000和1,而num-mappers为2的话,则会分成两个区域(1,500)和(501-100),同时也会分成2个sql给2个map去进行导入操作,分别为selectXXXfromtablewheresplit-by>=1andsplit-by<500和selectXXXfromtablewheresplit-by>=501andsplit-by<=1000。最后每个map各自获取各自SQL中的数据进行导入工作.


链接:https://www.jianshu.com/p/e42f307b1f07



Sqoop工具接收到客户端的shell命令或者Java api命令后,通过Sqoop中的任务翻译器(Task Translator)将命令转换为对应的MapReduce任务,而后将关系型数据库和Hadoop中的数据进行相互转移,进而完成数据的拷贝。

Sqoop大概流程

读取要导入数据的表结构,生成运行类,默认是QueryResult,打成jar包,然后提交给Hadoop

设置好job,

这里就由Hadoop来执行MapReduce来执行Import命令

1) 首先要对数据进行切分,也就是DataSplit,DataDrivenDBInputFormat.getSplits(JobContext job)

2) 切分好范围后,写入范围,以便读取DataDrivenDBInputFormat.write(DataOutput output),这里是lowerBoundQuery and upperBoundQuery

3) 读取以上2)写入的范围DataDrivenDBInputFormat.readFields(DataInput input)

4) 然后创建RecordReader从数据库中读取数据DataDrivenDBInputFormat.createRecordReader(InputSplit split,TaskAttemptContext context)

5) 创建MAP,MapTextImportMapper.setup(Context context)

6) RecordReader一行一行从关系型数据库中读取数据,设置好Map的Key和Value,交给MapDBRecordReader.nextKeyValue

7) 运行MAP,mapTextImportMapper.map(LongWritable key, SqoopRecord val, Context context),最后生成的Key是行数据,由QueryResult生成,Value是NullWritable.get

Sqoop1和Sqoop 2架构的变迁

首先这两个版本是完全不兼容的,其具体的版本号区别为1.4.x为sqoop1,1.99x为sqoop2。sqoop1和sqoop2在架构和用法上已经完全不同。在架构上,sqoop1仅仅使用一个sqoop客户端,sqoop2引入了sqoopserver,对connector实现了集中的管理。其访问方式也变得多样化了,其可以通过RESTAPI、JAVAAPI、WEBUI以及CLI控制台方式进行访问。另外,其在安全性能方面也有一定的改善,在sqoop1中我们经常用脚本的方式将HDFS中的数据导入到mysql中,或者反过来将mysql数据导入到HDFS中,其中在脚本里边都要显示指定mysql数据库的用户名和密码的,安全性做的不是太完善。在sqoop2中,如果是通过CLI方式访问的话,会有一个交互过程界面,你输入的密码信息不被看到,同时Sqoop2引入基于角色的安全机制。下图是sqoop1和sqoop2简单架构对比:

作者:CatherinePlans

链接:https://www.jianshu.com/p/e42f307b1f07

来源:简书

简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,076评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,658评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,732评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,493评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,591评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,598评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,601评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,348评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,797评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,114评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,278评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,953评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,585评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,202评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,180评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,139评论 2 352