Tensorflow之TensorBoard的使用

前言

这是对TensorBoard的简单使用 。

简介

Tensorboard是一个web应用程序套件,用于检查tensorflow程序的运行情况。可以直观了解训练情况。

使用

使用summary op。用上一篇文章的例子,用tensorboard记录cost的变化。

加入summary

把待观察的op加入到summary op 的scalar中

# 创建summary来观察损失值
tf.summary.scalar("loss", cost)

合并summary op

如果summary op过多需要合并一下。

merged_summary_op = tf.summary.merge_all()

指定保存log文件路径

其实tensorboard的原理就是程序运行完了之后产生log文件,这个东西就是让log数据可视化的显示出来。
那么既然是文件路径的话我们要指定保存文件路径。

logs_path="./example"

会话中执行

首先弄出一个保存的op,使用的是summary.FileWriter保存默认图。

    #op 把需要的记录数据写入文件
    summary_writer=tf.summary.FileWriter(logs_path,graph=tf.get_default_graph())

执行merged_summary_op

summary=sess.run(merged_summary_op,feed_dict={X: train_X, Y: train_Y})
summary_writer.add_summary(summary, epoch * n_samples)

详细代码

# -*- coding: utf-8 -*-
# @Time    : 2017/12/5 上午9:28
# @Author  : SkullFang
# @Email   : yzhang.private@gmail.com
# @File    : demo2.py
# @Software: PyCharm
import tensorflow as tf
import  numpy as np
import matplotlib.pyplot as plt
import random
#训练参数
learning_rate=0.01

traing_epochs=1000

display_step=50

logs_path="./example"
# 训练数据
train_X = np.asarray([3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167,
                         7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1])
train_Y = np.asarray([1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221,
                         2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3])

n_samples = train_X.shape[0]

#定义两个变量的op占位符

X=tf.placeholder("float")
Y=tf.placeholder("float")

#初始化w,b
W=tf.Variable(random.random(),name="weight")
b=tf.Variable(random.random(),name="bias")

#构造线性模型
pred=tf.add(tf.multiply(X,W),b)

#均方误差
#reduce_sum是对每一项进行加和
#reduce_sum(x,0)是每一列进行加和,reduce_sum(x,1)是对每一行进行加和
cost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)

#梯度下降
optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

#初始化所有的变量
init=tf.global_variables_initializer()

# 创建summary来观察损失值
tf.summary.scalar("loss", cost)
merged_summary_op = tf.summary.merge_all()

#以上都是构造op,只是为了告诉tensorflow 模型的数据流动方向



#使用session 启动默认图
with tf.Session() as sess:
    sess.run(init) #初始化

    #op 把需要的记录数据写入文件
    summary_writer=tf.summary.FileWriter(logs_path,graph=tf.get_default_graph())

    for epoch in range(traing_epochs):
        for (x,y) in zip(train_X,train_Y):
            sess.run(optimizer,feed_dict={X:train_X,Y:train_Y})


        if(epoch+1) % display_step==0:
            # c, summary = sess.run([cost, merged_summary_op], feed_dict={X: train_X, Y: train_Y})
            c= sess.run(cost, feed_dict={X: train_X, Y: train_Y})
            summary=sess.run(merged_summary_op,feed_dict={X: train_X, Y: train_Y})
            summary_writer.add_summary(summary, epoch * n_samples)

            # c=sess.run(cost,feed_dict={X:train_X,Y:train_Y})
            print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(c), \
                  "W=", sess.run(W), "b=", sess.run(b))



    print ("optimization Finished")
    training_cost = sess.run(cost,feed_dict={X:train_X,Y:train_Y})
    print ("Training cost=",training_cost,"W=",sess.run(W),"b=",sess.run(b),"\n")

    #画图
    plt.plot(train_X,train_Y,'ro',label="Original data")
    plt.plot(train_X,sess.run(W)*train_X+sess.run(b),label="Fitted line")
    plt.legend()
    plt.show()
    plt.savefig('linear_train.png')

    # 测试数据
    test_X = np.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
    test_Y = np.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])

    print("Testing... (Mean square loss Comparison)")
    testing_cost = sess.run(
        tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
        feed_dict={X: test_X, Y: test_Y})  # same function as cost above
    print("Testing cost=", testing_cost)
    print("Absolute mean square loss difference:", abs(
        training_cost - testing_cost))

    plt.plot(test_X, test_Y, 'bo', label='Testing data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()
    plt.savefig('linear_test.png')

效果

1

程序运行完了之后程序目录中会多出一个sample的文件夹,里面就是我们的log文件


image.png

2

打开自己的终端
在项目目录下面执行,记得一定是在项目目录下执行。这里就是指定log的文件夹,和端口。

tensorboard --logdir=./example --host 0.0.0.0
image.png

这是执行完的效果。
在浏览器中打开
http://0.0.0.0:6006
这就是最终的效果。我们可以看到loss的下降,说明我们学习的很好。横坐标是轮数

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容