Golang的Map

https://www.jianshu.com/p/aa0d4808cbb8

1、底层数据结构

    hashmap的定义位于src/runtime/hashmap.go 中,

struct hmap struct {

    count int // 元素个数

    flags uint8 // 状态标志

    B uint8 // 可以最多容纳 6.5 * 2 ^ B 个元素,6.5为装载因子

    noverflow uint16 // 溢出的个数

    hash0 uint32 // 哈希种子

    buckets unsafe.Pointer // 桶的地址

    oldbuckets unsafe.Pointer // 旧桶的地址,用于扩容

    nevacuate uintptr // 搬迁进度,小于nevacuate的已经搬迁

    overflow *[2]*[]*bmap

}

1、overflow是一个指针,指向一个元素个数为2的数组,数组的类型是一个指针,指向一个slice,slice的元素是桶(bmap)的地址,这些桶都是溢出桶;因为Go map在hash冲突过多时,会发生扩容操作,为了不全量搬迁数据,使用了增量搬迁,[0]表示当前使用的溢出桶集合,[1]是在发生扩容时,保存了旧的溢出桶集合;overflow存在的意义在于防止溢出桶被gc。

type bmap struct {

    // 每个元素hash值的高8位,如果tophash[0] < minTopHash,表示这个桶的搬迁状态 
     tophash [bucketCnt]uint8
     // 接下来是8个key、8个value,但是我们不能直接看到;为了优化对齐,go采用了key放在一起,value放在一起的存储方式,
     // 再接下来是hash冲突发生时,下一个溢出桶的地址

}

2、实现原理

        不同于STL中map以红黑树实现的方式,Golang采用了HashTable的实现,解决冲突采用的是链地址法。也就是说,使用数组+链表来实现map。

hashmap-buckets

    map是由数组+链表实现的HashTable,Golang通过hashtop快速试错加快了查找过程,利用空间换时间的思想解决了扩容的问题,利用将8个key(8个value)依次放置减少了padding空间等等。

3、扩容

    在分配assign逻辑中,当没有位置给key使用,而且满足测试条件(装载因子>6.5或有太多溢出通)时,会触发hashGrow逻辑。

    扩容阶段;在assign和delete操作中,都会触发扩容growWork。

    扩容策略:第一个大于count的2^B的B值。


example


4、并发安全

    并发操作,会看到读的时候会检查hashWriting标志, 如果有这个标志,就会报并发错误。

    h.flags |= hashWriting

    如果想在并发情况下使用,就要加锁,而且是加一把大锁。 加大锁大概率都不是最优解,一般都会有效率问题。 通俗说就是加大锁影响其他的元素操作了。

    解决思路:减少加锁时间。

    方法: 1.空间换时间。  2.降低影响范围。

    

sync.Map的使用:


       说白了,维护了两个字典。写的时候直接写dirty字典,读的时候先读read字典,然后再读dirty字典。

        type Map struct {

            mu Mutex

            read atomic.Value // readOnly

            dirty map[interface{}]*entry

            misses int

        } 

    mu:加锁作用。保护后文的dirty字段

    read:存读的数据。因为是atomic.Value类型,只读,所以并发是安全的。实际存的是readOnly的数据结构。

    misses:计数作用。每次从read中读失败,则计数+1。

    dirty:map[interface{}]*entry。包含最新写入的数据。当misses计数达到一定值,将其赋值给read。

    sync.Map的优缺点:优点:是官方出的,是亲儿子;通过读写分离,降低锁时间来提高效率; 缺点:不适用于大量写的场景,这样会导致read map读不到数据而进一步加锁读取,同时dirty map也会一直晋升为read map,整体性能较差。 适用场景:大量读,少量写

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容