Logistic Regression 为什么用极大似然函数

1. 简述 Logistic Regression

Logistic regression 用来解决二分类问题,

它假设数据服从伯努利分布,即输出为 正 负 两种情况,概率分别为 p 和 1-p,

目标函数 hθ(x;θ) 是对 p 的模拟,p 是个概率,这里用了 p=sigmoid 函数,
所以 目标函数 为:

为什么用 sigmoid 函数?请看:Logistic regression 为什么用 sigmoid ?

损失函数是由极大似然得到,

记:

则可统一写成:

写出似然函数:

取对数:

求解参数可以用梯度上升:

先求偏导:

再梯度更新:

常用的是梯度下降最小化负的似然函数。


2. 先来看常用的几种损失函数:

损失函数 举例 定义
0-1损失 用于分类,例如感知机
预测值和目标值不相等为1,否则为0
绝对值损失
平方损失 Linear Regression
使得所有点到回归直线的距离和最小
对数损失 Logistic Regression
常用于模型输出为每一类概率的分类器
Hinge损失 SVM
用于最大间隔分类
指数损失 AdaBoost

几种损失函数的曲线:

黑色:Gold Stantard
绿色:Hinge Loss中,当 yf(x)>1 时,其损失=0,当 yf(x)<1时,其损失呈线性增长(正好符合svm的需求)
红色 Log、蓝色 Exponential: 在 Hinge的左侧都是凸函数,并且Gold Stantard损失为它们的下界

要求最大似然时(即概率最大化),使用Log Loss最合适,一般会加上负号,变为求最小
损失函数的凸性及有界很重要,有时需要使用代理函数来满足这两个条件。


3. LR 损失函数为什么用极大似然函数?

  1. 因为我们想要让 每一个 样本的预测都要得到最大的概率,
    即将所有的样本预测后的概率进行相乘都最大,也就是极大似然函数.

  2. 对极大似然函数取对数以后相当于对数损失函数,
    由上面 梯度更新 的公式可以看出,
    对数损失函数的训练求解参数的速度是比较快的,
    而且更新速度只和x,y有关,比较的稳定,

  3. 为什么不用平方损失函数
    如果使用平方损失函数,梯度更新的速度会和 sigmod 函数的梯度相关,sigmod 函数在定义域内的梯度都不大于0.25,导致训练速度会非常慢。
    而且平方损失会导致损失函数是 theta 的非凸函数,不利于求解,因为非凸函数存在很多局部最优解。

什么是极大似然?请看简述极大似然估计


学习资料:
https://zhuanlan.zhihu.com/p/25021053
https://www.cnblogs.com/ModifyRong/p/7739955.html
https://zhuanlan.zhihu.com/p/34670728
http://www.cnblogs.com/futurehau/p/6707895.html
https://www.cnblogs.com/hejunlin1992/p/8158933.html
http://kubicode.me/2016/04/11/Machine%20Learning/Say-About-Loss-Function/


推荐阅读 历史技术博文链接汇总
http://www.jianshu.com/p/28f02bb59fe5
也许可以找到你想要的:
[入门问题][TensorFlow][深度学习][强化学习][神经网络][机器学习][自然语言处理][聊天机器人]

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容