【Docker搭建airflow】
参考链接:https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#docker-compose-env-variables
步骤:
(1) 从官网拉取yaml文件
获取一个yaml文件,参考如下:
version: '2.1'
services:
redis:
image: redis:latest
ports:
- "61379:6379"
# command: redis-server --requirepass redispass
postgres:
image: postgres:13
ports:
- "5432:5432"
environment:
- POSTGRES_USER=airflow
- POSTGRES_PASSWORD=airflow
- POSTGRES_DB=airflow
# Uncomment these lines to persist data on the local filesystem.
# - PGDATA=/var/lib/postgresql/data/pgdata
# volumes:
# - ./pgdata:/var/lib/postgresql/data/pgdata
webserver:
# image: puckel/docker-airflow:1.9.0-2
# image: ${AIRFLOW_IMAGE}
# image: apache/airflow:2.2.0
image: metrodata.hub.com/airflow_centos_py3:1.10
restart: always
depends_on:
# - postgres
- redis
volumes:
- ./airflow.cfg:/root/airflow/airflow.cfg
- ./dags:/root/airflow/dags
- ./logs:/root/airflow/logs
- /opt:/opt:ro
dns:
- 223.5.5.5
ports:
- "61080:8080"
environment:
- C_FORCE_ROOT=true
command: airflow webserver
healthcheck:
test: ["CMD-SHELL", "[ -f /root/airflow/airflow-webserver.pid ]"]
interval: 30s
timeout: 30s
retries: 3
flower:
#image: puckel/docker-airflow:1.9.0-2
#image: ${AIRFLOW_IMAGE}
#image: apache/airflow:2.2.0
image: metrodata.hub.com/airflow_centos_py3:1.10
restart: always
depends_on:
- redis
dns:
- 223.5.5.5
ports:
- "64555:5555"
environment:
- C_FORCE_ROOT=true
command: airflow flower
scheduler:
#image: puckel/docker-airflow:1.9.0-2
#image: ${AIRFLOW_IMAGE}
#image: apache/airflow:2.2.0
image: metrodata.hub.com/airflow_centos_py3:1.10
restart: always
depends_on:
- webserver
dns:
- 223.5.5.5
environment:
- C_FORCE_ROOT=true
volumes:
- ./airflow.cfg:/root/airflow/airflow.cfg
- ./dags:/root/airflow/dags
- ./logs:/root/airflow/logs
- /opt:/opt
command: airflow scheduler
worker:
#image: ${AIRFLOW_IMAGE}
#image: apache/airflow:2.2.0
#image: puckel/docker-airflow:1.9.0-2
image: metrodata.hub.com/airflow_centos_py3:1.10
restart: always
# network_mode: host
depends_on:
- scheduler
dns:
- 223.5.5.5
environment:
- C_FORCE_ROOT=true
volumes:
- ./airflow.cfg:/root/airflow/airflow.cfg
- ./dags:/root/airflow/dags
- ./logs:/root/airflow/logs
- /opt:/opt
command: airflow worker
备注:以上配置文件中使用的镜像(metrodata.hub.com/airflow_centos_py3:1.10)可以在百度网盘中下载:
https://pan.baidu.com/s/1oxUiNYxcU_FinhHhXbkuYQ 提取码:yzws
下载之后:
docker load -i aa.tar
(2)配置一个配置文件airflow.cfg,参考如下:
[core]
airflow_home = /root/airflow
dags_folder = /root/airflow/dags
base_log_folder = /root/airflow/logs
remote_log_conn_id =
encrypt_s3_logs = False
logging_level = INFO
logging_config_class =
log_format = [%%(asctime)s] {{%%(filename)s:%%(lineno)d}} %%(levelname)s - %%(message)s
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s
#executor = SequentialExecutor
executor = CeleryExecutor
sql_alchemy_conn = postgresql+psycopg2://airflow:airflow@10.253.14.131:5432/airflow
## 注,上述ip 10.253.14.131为airflow服务器自身的服务器ip
sql_alchemy_pool_size = 5
sql_alchemy_pool_recycle = 3600
parallelism = 32
dag_concurrency = 16
dags_are_paused_at_creation = True
non_pooled_task_slot_count = 128
max_active_runs_per_dag = 16
load_examples = False
plugins_folder = /root/airflow/plugins
fernet_key = RiTu0XwbUAWsGzRbkgFeZ1aC4oZ4JRRqBLs6LdGFSho=
donot_pickle = False
dagbag_import_timeout = 30
task_runner = BashTaskRunner
default_impersonation =
security =
unit_test_mode = False
task_log_reader = task
enable_xcom_pickling = True
killed_task_cleanup_time = 60
[cli]
api_client = airflow.api.client.local_client
endpoint_url = http://10.253.14.131:61080
[api]
auth_backend = airflow.api.auth.backend.default
[operators]
default_owner = Airflow
default_cpus = 1
default_ram = 512
default_disk = 512
default_gpus = 0
[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.password_auth
base_url = http://10.253.14.131:61080
web_server_host = 0.0.0.0
web_server_port = 8080
web_server_ssl_cert =
web_server_ssl_key =
web_server_worker_timeout = 120
worker_refresh_batch_size = 1
worker_refresh_interval = 30
secret_key = temporary_key
workers = 4
worker_class = sync
access_logfile = -
error_logfile = -
expose_config = True
filter_by_owner = False
owner_mode = user
dag_default_view = tree
dag_orientation = LR
demo_mode = False
log_fetch_timeout_sec = 5
hide_paused_dags_by_default = False
page_size = 100
[email]
email_backend = airflow.utils.email.send_email_smtp
[smtp]
smtp_host = smtp.exmail.qq.com
smtp_ssl = True
smtp_starttls = False
smtp_user = rendz@metrodata.cn
smtp_port = 465
smtp_password = 1q2w3eRDZRDZ
smtp_mail_from = rendz@metrodata.cn
[celery]
celery_app_name = airflow.executors.celery_executor
worker_concurrency = 16
worker_log_server_port = 61793
broker_url = redis://10.253.14.131:61379/1
result_backend = db+postgresql://airflow:airflow@10.253.14.131:5432/airflow
flower_host = 0.0.0.0
flower_port = 64555
default_queue = default
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG
ssl_active = False
[dask]
cluster_address = 127.0.0.1:8786
[scheduler]
job_heartbeat_sec = 5
scheduler_heartbeat_sec = 5
run_duration = -1
min_file_process_interval = 0
dag_dir_list_interval = 300
print_stats_interval = 30
child_process_log_directory = /root/airflow/logs/scheduler
scheduler_zombie_task_threshold = 300
catchup_by_default = True
max_tis_per_query = 0
statsd_on = False
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow
max_threads = 2
authenticate = False
[ldap]
uri =
user_filter = objectClass=*
user_name_attr = uid
group_member_attr = memberOf
superuser_filter =
data_profiler_filter =
bind_user = cn=Manager,dc=example,dc=com
bind_password = insecure
basedn = dc=example,dc=com
cacert = /etc/ca/ldap_ca.crt
search_scope = LEVEL
[mesos]
master = localhost:5050
framework_name = Airflow
task_cpu = 1
task_memory = 256
checkpoint = False
authenticate = False
[kerberos]
ccache = /tmp/airflow_krb5_ccache
principal = airflow
reinit_frequency = 3600
kinit_path = kinit
keytab = airflow.keytab
[github_enterprise]
api_rev = v3
[admin]
hide_sensitive_variable_fields = True
(3)在当前要安装的目录 建立相关的目录
mkdir -p ./dags ./logs ./plugins
(4)安装docker-compose
curl -L "https://github.com/docker/compose/releases/download/1.25.0/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
加上可执行权限:
chmod +x /usr/local/bin/docker-compose
(5)执行一下(在有docker-compose.yml的目录下面)
docker-compose up
(6)进入docker容器中初始化数据库
docker exec -it airflow_webserver_1 bash
docker initdb
(7)建立登录的用户,参考以下脚本:add_user.py
import airflow
from airflow import models, settings
from airflow.contrib.auth.backends.password_auth import PasswordUser
user = PasswordUser(models.User())
user.username = 'xxxxxx'
user.email = 'xxxx'
user.password = 'xxxxxxxx'
session = settings.Session()
session.add(user)
session.commit()
session.close()
exit()
需要先进入容器:docker exec -it airflow_webserver_1 bash
再用容器里面的python执行上述py脚本
(8)互联网访问
若服务器可以直接被互联网访问:
直接访问你的airflow.cfg配置里面的[webserver]下面的baseurl 链接
否则,配置一下nginx转发